scholarly journals Intelligent Fault Diagnosis of Gears Based on Deep Learning Feature Extraction and Particle Swarm Support Vector Machine State Recognition

2021 ◽  
pp. 26-40
Author(s):  
Ahmed N. Al Al-Masri ◽  
◽  
◽  
Hamam Mokayed

Gear faults have always been a problem encountered in mechanical processing. For gear fault diagnosis, using mathematical-statistical feature extraction methods, deep learning neural networks (DLNN), particle swarm algorithm (PSA), and support vector machines (SVM), etc. According to the feature extraction of deep learning and particle swarm SVM state recognition, the intelligent diagnosis model is established, and the reliability of the model is verified by experiments. The model uses the combination of spectral features extracted by deep learning adaptively and the time domain features extracted by mathematical statistics methods to form a joint feature vector and then uses particle swarm SVM to diagnose the joint feature vector. After research, this paper draws a classification fitness curve combining the fault spectrum features extracted by DLNN and traditional time-domain statistical features. The classification result obtained by using this method is 95.3%. The reliability of the model is verified, and satisfactory diagnosis results are obtained. In addition, the application results also verify the effectiveness of adaptively extracting spectral features based on deep learning.

2011 ◽  
Vol 128-129 ◽  
pp. 113-116 ◽  
Author(s):  
Zhi Biao Shi ◽  
Quan Gang Song ◽  
Ming Zhao Ma

Due to the influence of artificial factor and slow convergence of particle swarm algorithm (PSO) during parameters selection of support vector machine (SVM), this paper proposes a modified particle swarm optimization support vector machine (MPSO-SVM). A Steam turbine vibration fault diagnosis model was established and the failure data was used in fault diagnosis. The results of application show the model can get automatic optimization about the related parameters of support vector machine and achieve the ideal optimal solution globally. MPSO-SVM strategy is feasible and effective compared with traditional particle swarm optimization support vector machine (PSO-SVM) and genetic algorithm support vector machine (GA-SVM).


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Xingang WANG ◽  
Chao WANG

Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification accuracy, a fault diagnosis method based on Xgboost algorithm feature extraction is proposed. When the Xgboost algorithm classifies features, it generates an order of importance of the input features. The time domain features were extracted from the vibration signal of the rolling bearing, the time-frequency features were formed by the singular value of the modal components that were decomposed by the variational mode decomposition. Firstly, the extracted time domain and time-frequency domain features were input into the support vector machine respectively to observe the fault diagnosis accuracy. Then, Xgboost algorithm was used to rank the importance of features and got the accuracy of fault diagnosis. Finally, important features were extracted and the extracted features were input into the support vector machine to observe the fault diagnosis accuracy. The result shows that the fault diagnosis accuracy of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.


Author(s):  
Wan-ye Yao ◽  
Xue-Li Jiang

This function of wavelet packet decomposition and the energy of each band to strike is achieved within the Labview module. Signal energy in different frequency bands within the change reflects a change in the operating state. Extract wavelet packet energy spectrum of each band, making it as a feature vector. Finally the fault are classified by SVM. The two Parameters, the kernel function parameters g of radial machine support vector machine and penalty factor C of the radial machine support vector machine, are optimally chosen, automatically and rapidly, by using the method of particle swarm algorithm, avoiding the blindness of artificial selection parameters. The Matalab program of support vector machines based on particle swarm optimization are made into COM components. Mixed programming, Labview call COM component, generated by the M file, is implemented, which is divorced from the MATLAB environment, making it good for expanding the function of Labview. The effectiveness, wavelet packet energy spectrum - PSOSVM model of the bearing fault diagnosis, is verified.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


2012 ◽  
Vol 182-183 ◽  
pp. 1145-1148 ◽  
Author(s):  
Zeng Shou Dong ◽  
Xiao Yu Zhang ◽  
Jian Chao Zeng

BP neural network for failure pattern recognition has been used in hydraulic system fault diagnosis.However, its convergence rate is relatively small and always trapped at the local minima. So a new modified PSO-BP hydraulic system fault diagnosis method was proposed,which combined the respective advantages of particle swarm algorithm and BP algorithm. Firstly, the inertia weight and learning factor of the standard particle swarm algorithm was improved, then BP neural network’s weights and thresholds were optimized by modified PSO algorithm. BP network performance was ameliorated. The simulation results showed that this method improved the convergence rate of the BP network, and it could reduce the diagnostic errors.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Xue-cun Yang ◽  
Xiao-ru Yan ◽  
Chun-feng Song

For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM) is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM) and kernel function extreme learning machine prediction model (KELM). The results prove that mean square error (MSE) for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.


Sign in / Sign up

Export Citation Format

Share Document