scholarly journals Short communication: The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis

2018 ◽  
Vol 26 (3) ◽  
pp. eSC05 ◽  
Author(s):  
Catia Pereira ◽  
Itziar A. Montalbán ◽  
Tomás Goicoa ◽  
M. Dolores Ugarte ◽  
Sandra Correia ◽  
...  

Aim of the study: The effect of physical and chemical conditions at proliferation stage was evaluated in order to elucidate if this stage is the determinant phase to induce a marked effect in Pinus halepensis somatic embryogenesis.Area of study: The study was conducted in research laboratories of Neiker (Arkaute, Spain).Material and methods: Pinus halepensis embryonal masses from ten embryogenic cell lines subjected to nine treatments (tissues cultured at three temperatures on media supplemented with three agar concentrations) at proliferation stage.Main results: Significant differences were observed among different proliferation conditions months later at the end of maturation, germination and acclimatization stages.Research highlights: Aleppo pine embryonal masses are cultured under standard conditions on a culture medium supplemented with 4.5 g/L Gelrite® at 23ºC. However, better results in terms of plantlet production can be obtained proliferating the embryonal masses at 18ºC in a culture media with significantly lower water availability. 

Author(s):  
C. P. Spencer

Little is known of the biochemistry of diatoms, although many workers have reported growth experiments with the unicellular algae of the marine phyto-plankton. Experiments have often been performed without due regard for the appropriate control of physical and chemical conditions. Many reports contain only incomplete data of the growth under a given set of conditions, and it is often impossible to say whether the effects recorded are upon the growth rate, the total crop, or both. Other studies have been reported which included the addition of organic matter to cultures which were only uni-algal and not bacteria-free. At the present time even the mere maintenance of stock cultures of the marine unicellular algae is perforce an empirical matter. Results in replicate cultures often show gross differences in growth that are apparent on inspection by eye alone, and insufficient information is available regarding the nature of these variations in growth to allow the rational development of improved culture media. Due therefore to a lack of suitable techniques, most of the results available are difficult, if not impossible, to interpret in terms of the biochemical activities of the algae.


2020 ◽  
Vol 80 (4) ◽  
pp. 914-920 ◽  
Author(s):  
L. H. Sipaúba-Tavares ◽  
B. Scardoeli-Truzzi ◽  
D. C. Fenerick ◽  
M. G. Tedesque

Abstract Growth and biological conditions of Messastrum gracile were evaluated to compare the effect of photoautotrophic and mixotrophic cultivation on the increase of biomass production and chemical conditions cultured in macrophyte and commercial culture media. The growth rate (k) of M. gracile was different in the culture media, higher in mixotrophic cultivation for Lemna minor culture medium, whilst to Eichhornia crassipes and NPK culture media were higher in photoautotrophic cultivation. Mean lipid contents in photoautotrophic cultivation were 8.2% biomass dry weight, whereas they reached 19% biomass dry weight in mixotrophic cultivation. Protein contents were below 48% biomass dry weight in photoautotrophic cultivation and 30% biomass dry weight in mixotrophic cultivation. Messastrum gracile cultured in macrophyte culture media (E. crassipes and L. minor) and NPK culture medium provided satisfactory results with regard to lipid and protein contents in mixotrophic and photoautotrophic cultivations, respectively. Lipid and protein contents in alternative media were higher or similar to the CHU12 commercial culture medium.


2016 ◽  
Vol 21 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Catia Pereira ◽  
Itziar Aurora Montalbán ◽  
Olatz García-Mendiguren ◽  
Tomás Goicoa ◽  
Maria Dolores Ugarte ◽  
...  

Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2001 ◽  
Vol 27 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Andreas Papadopoulos ◽  
Françoise Serre-Bachet ◽  
Lucien Tessier

1993 ◽  
Vol 265 (2) ◽  
pp. H543-H552 ◽  
Author(s):  
Y. Yuan ◽  
W. M. Chilian ◽  
H. J. Granger ◽  
D. C. Zawieja

This study reports measurements of albumin permeability in isolated coronary venules. The isolated microvessel technique allows the quantification of transmural exchange of macromolecules under tightly controlled physical and chemical conditions. Transvenular exchange of albumin was studied in isolated coronary venules during alterations in filtration rate caused by changes in intravascular pressure. The apparent permeability coefficient of albumin (Pa) at an intraluminal pressure of 11 cmH2O was 3.92 +/- 0.43 x 10(-6) cm/s. Elevating intraluminal pressure to 16 and 21 cmH2O increased Pa to 5.13 +/- 0.57 x 10(-6) and 6.78 +/- 0.66 x 10(-6) cm/s, respectively. Calculation of the true diffusive permeability coefficient of albumin (Pd) at zero filtration rate was 1.54 x 10(-6) cm/s. The product of hydraulic conductance (Lp) and (1 - sigma), where sigma is the solute reflection coefficient, was 3.25 x 10(-7) cm.s-1 x cmH2O-1. At a net filtration pressure of 4-5 cmH2O, diffusion accounts for > 60% of total albumin transport across the venular wall. Transmural albumin flux is very sensitive to filtration rate, rising 6.7% for each cmH2O elevation of net filtration pressure. At 11 cmH2O net filtration pressure, convection accounts for nearly 70% of net albumin extravasation from the venular lumen. We suggest that the isolated coronary venule is a suitable preparation for the study of solute exchange in the heart.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 378
Author(s):  
Van-Tuyen Le ◽  
Samuel Bertrand ◽  
Thibaut Robiou du Pont ◽  
Fabrice Fleury ◽  
Nathalie Caroff ◽  
...  

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives—5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1’R, 2’S)-LL-P880β (3), 5,6-dihydro-4-methoxy-6S-(1’S, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1’R, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)—together with the known (6S, 1’S, 2’S)-LL-P880β (2), (1’R, 2’S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1’S, 2’R)-LL-P880β (9), (6S, 1’S)-pestalotin (10), 1’R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 539
Author(s):  
Benton C. Clark ◽  
Vera M. Kolb ◽  
Andrew Steele ◽  
Christopher H. House ◽  
Nina L. Lanza ◽  
...  

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1244
Author(s):  
Riina Muilu-Mäkelä ◽  
Jaana Vuosku ◽  
Hely Häggman ◽  
Tytti Sarjala

Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermidine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated that H+ ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.


2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


Sign in / Sign up

Export Citation Format

Share Document