scholarly journals Estimation of solar radiation using two step method in West Bengal

MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 529-536
Author(s):  
SUKUMAR ROY ◽  
(Smt.) SNIGDHA PAL ◽  
NABAJIT CHAKRAVARTY

 Solar radiation is the main source of energy for many physical, chemical and biological process .Estimation of solar radiation from other measured meteorological variables offers an important alternative in the absence of availability of measured solar radiation data. In this paper, we validate and assess five commonly used air temperature based models. The weather data of Dumdum (a station in Gangetic West Bengal) has been taken to observe whether the same works for this region or not. We have also validated and assessed a Local power-2 model (polynomial with degree two) with the same station, i.e.,  Dumdum (22.39° N, 88.27° E) and found it to give a more good result than Local model (linear in nature) so far developed. However the two step method to estimate solar radiation from the commonly measured air temperature in two steps gives more accurate estimation of solar radiation of a place. The model performance is evaluated using different law of error. Results show that the two step method gives good performance and significantly outperforms the temperature based models as claimed by our predecessors. The parameters of S/S0 equation were calculated by multiple regression model and was used `in the two step method for calculating the solar radiation. It is found that the two step method using the parameters determined by the proposed equations gives good performance. Therefore the two step method with the parameters determined by the proposed equations could also be used to estimate solar radiation in West Bengal and also at different places in India having similar topography. It is believed to be useful for the site where no measured solar radiation and sunshine duration data is available, whereas the air temperature are commonly measured.

MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 671-680
Author(s):  
SUKUMAR LALAROY ◽  
SANJIB BANDYOPADHYAY ◽  
SWETA DAS

bl 'kks/k i= dk mÌs'; Hkkjrh; rVh; LFkku vFkkZr~ if'peh caxky ds vyhiqj ¼dksydkrk½ esa izsf{kr HkweaMyh; lkSj fofdj.k dh enn ls gjxzhCl fofdj.k QkWewZyk ls rkjh[kokj la'kksf/kr KRS irk djuk gS ftlls fd vkxs ;fn U;wure rkieku ¼Tmin½ Kkr gks rks vf/kdre rkieku ¼Tmax½ dk iwokZuqeku nsus esa vFkok blds foijhr] mi;ksx fd;k tk ldsA HkweaMyh; lkSj fofdj.k ds chp lglaca/k dh x.kuk rkjh[kokj fd, x, /kwi ds ?kaVkokj  vk¡dM+ksa ds vkSlr ds mi;ksx ftlesa vkaXLVªkse izsLdkWV QkewZyk ls izkIr fu;rkad  as = 0-25 vkSj bs = 0-5 gS] ls dh xbZZ gSA blesa izsf{kr fd, x, HkweaMyh; lkSj fofdj.k vkadM+ksa dk v/;;u fd;k x;k gSA ;g fuf'pr :i  ls dgk tkrk gS fd vkaxLVªkse izsldkWV QkewZyk HkweaMyh; lkSj fofdj.k dk lVhd vkdyu djrk gS vkSj ;g lgh ik;k tkrk gSA bl 'kks/k i= esa gjxzhCl fofdj.k QkewZyk ¼ftles KRS = 0-19 fy;k x;k gS½ ls rkjh[kokj izkIr fd, x, vf/kdre rkiekuksa rFkk U;wure rkiekuksa ds vkSlr ¼vkadM+s Hkkjr ekSle foKku foHkkx ds vyhiqj] dksydkrk ftyk & 24 ijxuk ds dk;kZy; ls izkIr½ dk mi;ksx djds HkweaMyh; lkSj fofdj.k ds chp lglaca/k dh x.kuk dh xbZ gS vkSj bldk v/;;u izsf{kr HkweaMyh; lkSj fofdj.k ds lkFk Hkh fd;k x;k gSA rkjh[kokj la'kksf/kr KRS dh x.kuk gjxzhCl fofdj.k QkewZyk ls dh xbZA blesa HkweaMyh; lkSj fofdj.k ds izsf{kr vkadM+ksa] rkjh[kokj vf/kdre rkiekuksa vkSj U;wure rkiekuksa ds vkSlr mi;ksx esa fy, x, gSaA bls fdlh LVs'ku ds vf/kdre rkiekuksa  vkSj U;wure rkieku vkadMksa ds rkjh[kokj KRS  ds mi;ksx ds }kjk vkl ikl ds {ks=ksa ds ok"iksRltZu ds fy, HkweaMyh; lkSj fofdj.k dk vkdyu djus ds fy, Hkh mi;ksx esa yk;k tk ldrk gSA  The objective of this study is to find the date wise corrected KRS from the Hargreaves Radiation formula with the help of observed global solar radiation for the Indian coastal location namely Alipore (Kolkata) in West Bengal so that subsequently it can be used for predicting maximum temperature Tmax if minimum temperature Tmin is known or vice-versa. The correlation between the global solar radiation calculated by using date wise average sunshine hour data with constants as = 0.25 and bs = 0.5, from Angstrom Prescott formula with the observed global solar radiation data was studied. The assertion that the Angstrom Prescott formula gives nearly accurate estimation of global solar radiation has been found to be correct. Correlation between the global solar radiation calculated by using date wise average of Tmax and Tmin (sourced from IMD located at Alipore, Kolkata, District - South 24 parganas) from Hargreaves Radiation formula (taking KRS  = 0.19 ) with the observed global solar radiation data was also  studied. Date wise corrected  KRS by Hargreaves Radiation formula was computed using the observed data of global solar radiation, date wise average of maximum temperature Tmax and minimum temperature Tmin. The date wise corrected KRS can be used for better prediction of Tmax and Tmin. Also it can be used for estimation of global solar radiation for reference evapo-transpiration of the neighbourhood areas by utilizing the date wise KRS with the Tmax and Tmin of the station.


2011 ◽  
Vol 57 (202) ◽  
pp. 367-381 ◽  
Author(s):  
Francesca Pellicciotti ◽  
Thomas Raschle ◽  
Thomas Huerlimann ◽  
Marco Carenzo ◽  
Paolo Burlando

AbstractWe explore the robustness and transferability of parameterizations of cloud radiative forcing used in glacier melt models at two sites in the Swiss Alps. We also look at the rationale behind some of the most commonly used approaches, and explore the relationship between cloud transmittance and several standard meteorological variables. The 2 m air-temperature diurnal range is the best predictor of variations in cloud transmittance. However, linear and exponential parameterizations can only explain 30–50% of the observed variance in computed cloud transmittance factors. We examine the impact of modelled cloud transmittance factors on both solar radiation and ablation rates computed with an enhanced temperature-index model. The melt model performance decreases when modelled radiation is used, the reduction being due to an underestimation of incoming solar radiation on clear-sky days. The model works well under overcast conditions. We also seek alternatives to the use of in situ ground data. However, outputs from an atmospheric model (2.2 km horizontal resolution) do not seem to provide an alternative to the parameterizations of cloud radiative forcing based on observations of air temperature at glacier automatic weather stations. Conversely, the correct definition of overcast conditions is important.


2016 ◽  
Vol 9 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Sisuru Sendanayake ◽  
Nandika Miguntanna ◽  
M. T. R. Jayasinghe

There are many correlations developed to predict incident solar radiation at a given location developed based on geographical and meteorological parameters. However, all correlations depend on accurate measurement and availability of weather data such as sunshine duration, cloud cover, relative humidity, maximum and minimum temperatures etc, which essentially is a costly exercise in terms of equipment and labour. Sri Lanka being a tropical island of latitudinal change of only 30 along the length of the country, the meteorological factors govern the amount of incident radiation. Considering the cloud formation and wind patterns over Sri Lanka as well as the seasonal rainfall patterns, it can be observed that the mean number of rainy days can be used to predict the monthly average daily global radiation which can be used for calculations in solar related activities conveniently.


2016 ◽  
Vol 9 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Sisuru Sendanayake ◽  
Nandika Miguntanna ◽  
M. T. R. Jayasinghe

There are many correlations developed to predict incident solar radiation at a given location developed based on geographical and meteorological parameters. However, all correlations depend on accurate measurement and availability of weather data such as sunshine duration, cloud cover, relative humidity, maximum and minimum temperatures etc, which essentially is a costly exercise in terms of equipment and labour. Sri Lanka being a tropical island of latitudinal change of only 30 along the length of the country, the meteorological factors govern the amount of incident radiation. Considering the cloud formation and wind patterns over Sri Lanka as well as the seasonal rainfall patterns, it can be observed that the mean number of rainy days can be used to predict the monthly average daily global radiation which can be used for calculations in solar related activities conveniently.


2011 ◽  
Vol 140 (6) ◽  
pp. 991-996 ◽  
Author(s):  
K. ISHIHARA ◽  
R. TAKAHASHI ◽  
M. ANDOH ◽  
K. MAKITA ◽  
S. KAMIJI ◽  
...  

SUMMARYJapanese weather data for areas that produced Campylobacter spp.-positive chicken products were compared with those for areas producing negative samples. Regarding samples produced during the period of rising temperature (spring and summer), the mean weekly air temperatures for Campylobacter-positive samples were higher than those for negative samples for the period of the week in which the samples were purchased (18·7°C vs. 13·1°C, P=0·006) to a 12-week lag (12 weeks before purchasing samples; 7·9°C vs. 3·4°C, P=0·009). Significant differences in weekly mean minimum humidity and sunshine duration per day were also observed for 1- and 2-week lag periods. We postulated that the high air temperature, high humidity and short duration of sunshine for the chicken-rearing period increased Campylobacter colonization in chickens during the period of rising temperature. Consequently, the number of Campylobacter-contaminated chicken products on the market in Japan may fluctuate because of the climatic conditions to which reared chickens are exposed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Sign in / Sign up

Export Citation Format

Share Document