scholarly journals Energy and tannin extract supplementation for dairy cows on annual winter pastures

2017 ◽  
Vol 38 (2) ◽  
pp. 1017 ◽  
Author(s):  
Tiago Pansard Alves ◽  
Kamila Maciel Dias ◽  
Lucélia Janes Hans Dallastra ◽  
Bibiana Lima Fonseca ◽  
Henrique Mendonça Nunes Ribeiro-Filho

Energy supplementation can increase the consumption of metabolizable energy and substrate for microbial growth, while condensed tannins aid in increasing the duodenal flow of foodborne metabolizable proteins. The objective of this study was to evaluate the effects of energy supplementation and the inclusion of tannin extract (TE) from Acacia mearnsii (Weibull Black, Tanac S. A., Montenegro, Brazil) on the production performance of dairy cows grazing on winter pastures. Nine multiparous Holstein cows in mid lactation were distributed in a 3 × 3 Latin square experimental design over three periods of 28 days (21 adaptation and 7 sampling). The treatments were: without supplementation (WS), supplementation with 4 kg of corn grain (CG), and corn grain + 80 g of tannin extract (TE). The dry matter (DM) intake from pastures was similar among treatments, but the consumption of DM of the supplement was higher in the CG treatment than that in the TE treatment. The total DM intake was higher for the supplemented animals (17.3 kg?day-1) than that for the unsupplemented animals (14.9 kg?day-1) and in the TE treatment (17.7 kg?day-1) than in the CG treatment (16.7 kg day-1). Milk production increased from the unsupplemented to the supplemented animals (20.9 to 23.5 kg, respectively), while the content of urea N in the milk decreased (12.6 to 10.5 mg?100 mL-1, respectively). There were no differences in milk production or content of milk urea N between the CG and TE treatments. Energy supplementation is a tool for improving the nutritional profile and the performance of dairy cows in mid lactation grazing on annual winter pastures, while tannin extract aids in improving the energy balance.

2020 ◽  
Vol 60 (12) ◽  
pp. 1521
Author(s):  
Z. Iqbal ◽  
M. A. Rashid ◽  
T. N. Pasha ◽  
J. A. Bhatti

Current study evaluated the effects of feeding straw source and energy supplementation during prepartum period on postpartum production performance and changes in blood metabolites of crossbred dairy cows. Twenty-eight crossbred (Holstein × Sahiwal) cows were randomly assigned to one of the following four dietary treatments: (1) wheat straw and corn grain (WSCG), (2) wheat straw and wheat bran (WSWB), (3) oat straw and corn grain (OSCG) and (4) oat straw and wheat bran (OSWB) in a 2 × 2 factorial experiment. Iso-nitrogenous diets fed as ad libitum total mixed ration contained 25% wheat straw (WS) or oat straw (OS) and 10% corn grain (CG) or wheat bran (WB). Experimental duration was 42 days before and 56 days after calving. After calving, all animals were fed a similar lactation diet. Pre- and postpartum dry-matter intake % of BW was not affected by treatments. Prepartum energy balance (EBAL) was higher for OS than WS and higher for CG than WB animals. Postpartum EBAL was higher in the WSCG than OSCG treatment. Milk production and composition were not affected by straw source or energy concentrate. Milk yield at Weeks 1, 2 and 3 was higher in the WSWB than WSCG and OSWB treatments. Total solids and feed efficiency were higher in the WSWB than WSCG treatment. Postpartum plasma concentration of non-esterified fatty acids was higher in the WS than the OS diet; however, the measured values were within normal limits. Postpartum plasma β-hydroxybutyrate concentration was not affected by straw source or energy concentrate. Cows fed WSWB prepartum were in positive EBAL, before and after calving, closer to the recommended requirements. Moreover, cows fed WSWB had a lower incidence of health disorders and subclinical ketosis, higher milk production and better feed conversion efficiency during first 3 weeks after calving.


Dairy ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 462-468
Author(s):  
Long Cheng ◽  
Razaq Balogun ◽  
Fanzeng Meng ◽  
Frank R. Dunshea ◽  
Brendan Cullen

The study utilised a pasture grazing based, voluntary traffic automatic milking system to investigate milk production of cows fed a pasture-based diet and supplemented with a pellet formulated with vs. without rumen-protected lysine and methionine (RPLM). The study adopted a switch-over design (over two periods of 5 and 10 weeks, respectively) and used 36 cows and equally allocated them into two experimental groups. The RPLM (Trial) pellet had 2% lower crude protein, but similar metabolizable energy content compared to the Control pellet. Pellet intake was 10.0 and 9.4 kg/day/cow. Milk yield was 36.2 and 34.4 kg/day/cow (p = 0.23), and energy corrected milk was 35.1 and 33.8 kg/day/cow (p = 0.076), and milk solids was 2.55 and 2.46 kg/cow/day (p = 0.073) in the Control and Trial groups, respectively. Milk fat%, milk protein%, milk fat: protein ratio, milking frequency and rumination time were not different between the two groups (p > 0.05). In period 1, plasma glucose was 3.1 mmol/L for both groups and milk urea were 150 and 127 mg/L in the Control and Trial groups, respectively. Both plasma glucose (as a proxy for energy supply) and milk urea (as a proxy for nitrogen use efficiency; NUE) were not different between groups (p > 0.05). This study showed that under a grazing pasture system, feeding lactating dairy cows a low protein pellet with RPLM supplementation, maintained milk production performance and NUE, compared with cows fed a high protein Control pellet diet with no RPLM. Further research should assess the long-term (seasonal) effects of feeding a diet formulated with RPLM on cow intake, health and reproductive performance.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


1984 ◽  
Vol 103 (1) ◽  
pp. 161-170 ◽  
Author(s):  
P. G. Jennings ◽  
W. Holmes

SummaryTwo experiments were conducted with milking cows on continuously stocked perennial ryegrass pastures. In each a control group, T0, received 1 kg/day of a concentrate supplement and treatment groups T1 and T2 received 4 kg (Expt 1) or 5 kg/day (Expt 2) of a low quality T1 or a high quality T2 concentrate. In Expt 1 treatments were applied continuously for 14 weeks to a total of 30 cows. In Expt 2 a Latin square design for 9 weeks was conducted with 18 cows. The stocking rate of the pasture declined from 9·6 to 5·1 cows per ha (mean 6·7 cows/ha) from May to August (Expt 1) and was maintained at 3 cows/ha in August-October (Expt 2).Supplements increased total intakes by 0·92 and 0·77 kg organic matter (OM)/kg OM supplied in the concentrates respectively for Expts 1 and 2. Milk yields increased by 0·6 and 0·5 kg/kg concentrate supplied and supplemented cows showed small increases in live weight. Differences in lactation milk yield just approached significance. Grazing times were only slightly reduced by supplements and bite sizes were lower than normal. There was no important difference in animal performance between the two concentrates. The total output from the pasture was 19·6t milk and 115 GJ of utilized metabolizable energy per hectare.Reasons for the high supplementary effect of the concentrates and its implications for stocking rates are discussed.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yizhe Cui ◽  
Zhuorui Shan ◽  
Lintong Hou ◽  
Qiuju Wang ◽  
Juan J. Loor ◽  
...  

This study examined the effect of mixed medicinal herbs from China in the ground form on milk yield and various blood metabolites before and after parturition in Holstein cows. Crushed Agastache rugosus, Scutellaria barbata, Pericarpium citri reticulate, and Radix glycyrrhizae were used to develop TCMF4. Thirty-two Chinese Holstein cows were randomly divided into a control group or groups receiving 0.1, 0.3, or 0.5 kg TCMF4/cow/d from −7 through 21 d relative to parturition. Blood samples for serum isolation were collected at −7, −1, 1, 7, 14, and 21 d relative to parturition and used to measure glucose, β-hydroxybutyric acid (BHBA), total protein, albumin, globulin, and alkaline phosphatase. Milk production was recorded daily for the first 21 d postpartum, and composition was analyzed at 7, 14, and 21 d. Data were analyzed using a one-way analysis of variance (ANOVA) for multiple comparisons. The average milk production during the first 21-d postpartum was 28.7 ± 6.9, 27.2 ± 7.1, 31.2 ± 6.8, and 38.5 ± 6.1 kg/d for control group and groups receiving 0.1, 0.3, or 0.5 kg TCMF4. Thus, average daily milk production increased between 9 to 34% by supplementation with TCMF4 compared with the control group. Compared with the control group, in the middle dose group, milk concentrations of lactose and total protein decreased by 21 and 19%, respectively, at d 7 around parturition, while total solids increased by 23% at d 21 in the high-dose group. Furthermore, compared with the control group, serum BHBA decreased by 50 and 20% at d −1 and 21 around parturition in the high-dose group. Overall, TCMF4 supplementation improved dry matter intake (DMI) and milk production of dairy cows during the periparturient period without adverse effects on liver function, and plasma BHBA concentrations of dairy cows tended to decrease when dietary TCMF4 increased, which suggested that TCMF4 might be used as potential additives in dairy cows to improve production performance.


Author(s):  
F.P. O'Mara ◽  
J.J. Murphy ◽  
M. Rath

Milk protein synthesis may be limited by amino acid (AA) flow to the duodenum. This can be increased by increasing the flow of microbial AA's or undegraded feed AA's. This experiment was carried out to determine the effect on milk production and nutrient flows at the duodenum of including fishmeal (120g/kg) in the supplement to grass silage at two levels of supplement feeding.The treatments, arranged in a 2x2 factorial, were 1.) 3.5 kg/day of 0% fishmeal supplement (L-UDP), 2.) 7 kg/day of L-UDP, 3.) 3.5 kg/day of 12% fishmeal supplement (H-UDP), and 4.) 7 kg/day of H-UDP. Supplements were fed to 3 6 Friesian cows in a 4x4 multiple Latin-square trial with three week periods to determine production responses, and to four ruminally and duodenally cannulated cows to determine rumen fermentation and nutrient flows. Flows were determined by the dual marker technique of Faichney (1975) using cobalt-EDTA and ytterbium acetate as liquid and solid phase markers respectively. Purines were used as the bacterial marker (Zinn and Owens, 1986). Degradability of the feeds was measured in 3 other cows using the small bag technique described by De Boer et al. (1987).


1999 ◽  
Vol 132 (4) ◽  
pp. 483-490 ◽  
Author(s):  
C. P. FERRIS ◽  
F. J. GORDON ◽  
D. C. PATTERSON ◽  
M. G. PORTER ◽  
T. YAN

Sixty Holstein/Friesian dairy cows, 28 of high genetic merit and 32 of medium genetic merit, were used in a continuous design, 2 (cow genotypes)×4 (concentrate proportion in diet) factorial experiment. High and medium merit animals had Predicted Transmitting Abilities for milk fat plus protein yield, calculated using 1995 as the base year (PTA95 fat plus protein), of 43·3 kg and 1·0 kg respectively. Concentrate proportions in the diet were 0·37, 0·48, 0·59 and 0·70 of total dry matter (DM), with the remainder of the diet being grass silage. During this milk production trial, 24 of these animals, 12 from each genetic merit, representing three animals from each concentrate treatment, were subject to ration digestibility, and nitrogen and energy utilization studies. In addition, the efficiency of energy utilization during the milk production trial was calculated.There were no genotype×concentrate level interactions for any of the variables measured (P>0·05). Neither genetic merit nor concentrate proportion in the diet influenced the digestibility of either the DM or energy components of the ration (P>0·05). When expressed as a proportion of nitrogen intake, medium merit cows exhibited a higher urinary nitrogen output and a lower milk nitrogen output than the high merit cows. Methane energy output, when expressed as a proportion of gross energy intake, was higher for the medium than high merit cows (P<0·05), while urinary energy output tended to decrease with increasing proportion of concentrate in the diet (P<0·05). In the calorimetric studies, neither heat energy production, milk energy output and energy retained, when expressed as a proportion of metabolizable energy intake, nor the efficiency of lactation (kl), were affected by either cow genotype or concentrate proportion in the diet (P>0·05). However when kl was calculated using the production data from the milk production trial the high merit cows were found to have significantly higher kl values than the medium merit cows (0·64 v. 0·59, P<0·05) while k l tended to fall with increasing proportion of concentrate in the ration (P<0·05). However in view of the many assumptions which were used in these latter calculations, a cautious interpretation is required.


2019 ◽  
Vol 71 (3) ◽  
pp. 1037-1046
Author(s):  
M.F. Miguel ◽  
R. Delagarde ◽  
H.M.N. Ribeiro-Filho

ABSTRACT Corn silage supplementation for dairy cows grazing in temperate annual pastures has rarely been investigated. The aim of this study is to compare two supplementation levels (0 and 4kg dry matter [DM]/day of a 7:1 mixture of corn silage and soybean meal) in dairy cows strip-grazing annual ryegrass (Lolium multiflorum Lam.) at two pasture allowances (PA, low= 25 and high = 40kg DM/d at ground level). The study was carried out according to an incomplete 4 × 3 Latin square design, using 12 cows and three experimental periods of 12 days. The green leaves allowances were only 4.9 and 8.5kg DM/d at the low and high PA, respectively. The total DM intake and milk production increased in supplemented cows compared to un-supplemented cows at the low PA, but were similar between supplementation levels at the high PA. The PI was unaffected by the PA, whereas the substitution rate was 0.68 in cows at the low PA and 1.35 in cows at the high PA. Corn silage supplementation may improve the total DM intake and milk production of dairy cows grazing in temperate annual pastures, but only at a low PA.


2019 ◽  
Vol 73 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Rongzhen Zhong ◽  
Chengzhen Zhao ◽  
Piao Feng ◽  
Yitong Wang ◽  
Xueli Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document