scholarly journals Effect of mulching, row direction and spacing on microclimate and wheat yield at Ludhiana

2021 ◽  
Vol 21 (1) ◽  
pp. 42-45
Author(s):  
L.K. DHALIWAL ◽  
G.S. BUTTAR ◽  
P.K. KINGRA ◽  
SUKHVIR SINGH ◽  
SUKHJEET KAUR

The field experiments were conducted in rabi seasons of 2014-15 and 2015-16 at research farm, Ludhiana, Punjab. Wheat variety (WH 1105) was sown in two row directions viz, east-west (E-W) and north-south (N-S) with three row spacing as S1 (15 cm), S2 (22.5 cm) and S3 (30 cm), and two mulching levels viz., Mo (No mulch) and M1 (mulch at the rate of 5t ha-1). PAR interception, canopy temperature, soil temperature and soil moisture were recorded periodically during the crop season in all the treatments. The results revealed that the intercepted photosynthetically active radiation (PAR) was 4- 5 per cent higher in E-W than N-S row direction which contributed 1.67 q ha-1 higher grain yield. Better utilization of solar radiation was observed in 15.0 cm row spacing and the canopy temperature was 0.5°C higher in unmulched crop as compared to mulched crop during both years. Straw mulching @ 5t ha-1 improved soil moisture and regulated soil temperature. Mean soil temperature was higher (1.0 ºC) under mulched crop as compared to unmulched crop. The soil moisture was 4-5 per cent higher under mulched crop as compared to unmulched crop which ultimately resulted in higher soil temperature during early growth stages. Significantly higher grain yield was recorded in mulched crop as compared to unmulched.

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 161-172
Author(s):  
ANANTA VASHISTH ◽  
DEBASISH ROY ◽  
AVINASH GOYAL ◽  
P. KRISHNAN

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  


2001 ◽  
Vol 49 (3) ◽  
pp. 273-282 ◽  
Author(s):  
M. Long ◽  
H. Eiszner

HALLE-WITTENBERG, HALLE(SAALE), GERMANY Received: 13 June, 2001; accepted: 6 August, 2001 Field experiments were conducted at a high latitude site for sunflower (Helianthus annuus L.) production in central Germany (51 o 24' N, 11 o 53' E) in 1996, 1997 and 1998. The responses of sunflower development to various planting patterns differed in the duration from emergence to the middle of the linear growth period as calculated via a tangent hyperbolic model F(t)=(. +ß)×tanh[. ×(t–.)]. Final dry matter accumulation showed few differences among the planting patterns: 12 plants m –2 at 50 cm row spacing at 75 cm row spacing (RS2PD2) and 4 plants m –2 at 100 cm row spacing (RS3PD1). The actual and simulated values for final dry matter were close to 1200 g m –2 . The responses of soil moisture and temperature to planting patterns changed from the upper to the deep soil layers. In a normal year, e.g. 1997, the soil water to 150 cm depth was sufficient for sunflower growth. In a drought year, e.g. 1998, soil water deeper than 150 cm was used by sunflower crops. The soil temperature was mostly lower in RS1PD3 and RS2PD2 than in RS3PD1, particularly in the upper soil, at depths of 5 and 20 cm. The most important factor defining the responses of soil moisture and temperature to planting patterns seems to be the amount of radiation penetrating the ground, which may depend on latitude, wind and row orientation.


1981 ◽  
Vol 97 (1) ◽  
pp. 135-142 ◽  
Author(s):  
G. S. Dhillon ◽  
D. S. Kler

SUMMARYField experiments were made at the Punjab Agricultural University, Ludhiana, during 1974–5 to 1978–9 to study the possibility of improving wheat yield by more efficient use of radiant energy through modification of the shape of the canopy under varying levels of fertilizers, irrigation and seed rates. The results showed substantial yield increase by sowing half the seed and fertilizers in one direction and half in rows at right angles, giving a spacing of 22·5 × 22·5 cm, thereby intercepting more light, which showed a significant direct relationship with yield, but there were negative correlations with soil temperature. The increase in row spacing decreased the yield. With 33% extra fertilizer than the local recommendation, sowing the crop in two directions gave 0·96 t/ha (33·4%) higher yield, whereas none of the other sowing methods showed significant increase. Mixing varieties to form a prismatic canopy gave higher yield than the mean of the varieties sown alone. Irrigating the crop more than thrice did not prove beneficial. North-south row direction tended to improve yield compared with east-west rows. Seed rates varying from 50 to 200 kg/ha showed neither significant effect, nor interaction with canopy shape except in 1978–9 when 150 kg seed/ha showed yield improvement over 100 kg/ha.


Author(s):  
Shahbaz Khan ◽  
Atif Rasool ◽  
Sohail Irshad ◽  
Muhammad Bilal Hafeez ◽  
Madad Ali ◽  
...  

Abstract Wheat is the main crop in the world ranks after rice and the largest grain source of Pakistan. Among several reasons for diminishing wheat yield in Pakistan, water stress throughout the growing season decreases crop production because of the short life span. Two years (2015–16 and 2016–17) field experiments were conducted to assess the impact of various water regimes (full irrigation, irrigation at 45, 60, and 75 mm potential soil moisture deficit (PSMD)) on the growth and yield of wheat. Maximum crop growth rate was recorded by application of irrigation at 45 mm PSMD. Application of irrigation at 45 mm PSMD ensured maximum radiation use efficiency regarding total dry matter production and grain yield. The maximum number of productive tillers, spike length, and grain yield were recorded under 45 mm PSDM treatment. The present results show that the effect of water is more pronounced regarding the growth and productivity of wheat. Application of irrigation at 45 mm PSMD ensures higher economical yield.


1971 ◽  
Vol 51 (1) ◽  
pp. 17-20
Author(s):  
G. H. GUBBELS

The effects of clear polyethylene mulch, soil ridges, and row orientation on soil temperature, soil moisture and crop growth were studied in field experiments north of latitude 60°, with cabbage as the test crop. Mulch increased soil temperature and cabbage yield regardless of ridge type and row orientation. Soil temperature differences between mulched plots were small at 8:00 a.m. but large at 3:30 p.m. The highest temperatures at 3:30 p.m. were obtained in the even-ridge, followed in decreasing order by uneven-ridge, no-ridge and double-ridge treatments. Soil moisture levels were lower in the mulched single-ridge plots than in the mulched double-ridge and no-ridged plots. No differences were found between single ridges running north—south and single ridges running east—west.


2016 ◽  
Vol 54 (2) ◽  
pp. 257-272 ◽  
Author(s):  
XIAOYU ZHANG ◽  
XIYING ZHANG ◽  
SUYING CHEN ◽  
HONGYONG SUN ◽  
LIWEI SHAO ◽  
...  

SUMMARYSelecting high-yielding cultivars under drought is an important practice to improve crop production. Canopy temperature (T) shows a relative reliable association with grain yield. In this study, we compared the suitability of canopy T and other agronomic as well as physiological traits associated with grain yield under different water regimes. Field experiments over two seasons (2011–2012 and 2012–2013) were carried out under three water regimes, represented about 64, 76 and 89% of potential evapotranspiration, with 16 local winter wheat (Triticum aestivum L.) cultivars in each season. Results showed that cultivars with higher yield usually performed consistently lower canopy T under three water regimes, while the relationships of grain yield with other agronomic or physiological traits were more influenced by soil moisture. In addition, the relationship between canopy T and grain yield varied with different growth stages: From the time of heading to early grain filling stages, a more significant negative linear relationship (p < 0.001) existed under the three irrigation levels.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Syeda Refat Sultana ◽  
Amjed Ali ◽  
Ashfaq Ahmad ◽  
Muhammad Mubeen ◽  
M. Zia-Ul-Haq ◽  
...  

For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates (N1= 0 kg ha−1,N2= 55 kg ha−1,N3=110 kg ha−1, andN4= 220 kg ha−1) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4(220 kg ha−1) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (R2 = 0.90;R2 = 0.90;R2 = 0.95), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country.


1990 ◽  
Vol 4 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
J. D. Green ◽  
Wan M. Wanyahaya ◽  
David L. Weeks

Barnyardgrass, large crabgrass, and Texas panicum were evaluated in field experiments over 3 yr to measure their duration of interference and density on grain sorghum yield. When grain yield data were converted to a percentage of the weed-free control, linear regression predicted a 3.6% yield loss for each week of weed interference regardless of year or grass species. Grain sorghum grown in a narrow (61-cm) row spacing was affected little by full-season interference; however, in wide (91-cm) rows, interference increased as grass density increased. Data from the wide-row spacing were described by linear regression following conversion of grain yield to percentages and weed density to log10. A separate nonlinear model also was derived which could predict the effect of weed density on grain sorghum yield.


2016 ◽  
Vol 67 (2) ◽  
pp. 137 ◽  
Author(s):  
Minuka M. Weerasinghe ◽  
Peter S. Kettlewell ◽  
Ivan G. Grove ◽  
Martin C. Hare

Application of film antitranspirant to wheat during late stem extension reduces drought damage to yield, but the mechanism is unknown. Field experiments under rain shelters were conducted over 3 years to test the hypothesis that film antitranspirant applied before meiosis alleviates drought-induced losses of pollen viability, grain number and yield. The film antitranspirant di-1-p-menthene was applied at third-node stage, and meiosis occurred at the early boot stage, with a range of 11–16 days after spray application in different years. Irrigated, unsprayed plots were included under the rain-shelters, and pollen viability, measured in 2 years in these plots, averaged 95.3%. Drought reduced pollen viability to 80.1% in unirrigated, unsprayed plots, but only to 88.6% in unirrigated plots treated with film antitranspirant. Grain number and yield of irrigated plots, measured in all years, were 16 529 m–2 and 9.55 t ha–1, respectively, on average. These were reduced by drought to 11 410 m–2 and 6.31 t ha–1 in unirrigated, unsprayed plots, but only to 12 878 m–2 and 6.97 t ha–1 in unirrigated plots treated with film antitranspirant. Thus compared with unirrigated, unsprayed plots, antitranspirant gave a grain yield benefit of 0.66 t ha–1. Further work is needed to validate the pollen viability mechanism in different climatic zones and with a wide range of cultivars.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


Sign in / Sign up

Export Citation Format

Share Document