scholarly journals Evaluating temperature thresholds and optimizing sowing dates of wheat in Bihar

2021 ◽  
Vol 22 (2) ◽  
pp. 158-164
Author(s):  
ABDUS SATTAR ◽  
GULAB SINGH ◽  
SHRUTI V. SINGH ◽  
MAHESH KUMAR ◽  
P. VIJAYA KUMAR ◽  
...  

Studies on wheat-weather relationship were carried out at Pusa (25.98 oN, 85.67 oE, 52 m), Bihar situated in middle Gangetic plains of India, with three popular wheat cultivars viz. RW 3711, HD 2824 and HD273, grown under five fixed dates of sowing viz. 15 November, 25 November, 5 December, 15 December and 25 December, for five consecutive rabi seasons from 2011-12 to 2015-16. Thresholds of maximum temperature (Tmax), minimum temperature (Tmin) and bright sunshine hours (BSH), associated with higher productivity, occurring at different phenophases, were determined. Results revealed that temperature played a crucial role in achieving higher grain yield of wheat. Both Tmax and Tmin during flowering to milking and flowering to maturity phases increased with delayed sowing dates beyond 25 November with consequent reductions in grain yield. During 50 % flowering to milk stage, Tmax and Tmin above 24.6 oC and 11.6 oC, respectively, reduced grain yield below 4000 kg ha-1; significant reduction in grain yield was also noted beyond maximum temperature of 26.9 oC. During flowering to milk and flowering to maturity phases, Tmax and Tmin exhibited highly significant negative correlation with grain yield, indicating higher temperatures causing lower grain yield. With delayed sowing, sensitive phases of the crop experienced higher air temperatures which led to reduction in grain yield. An increase of Tmax from 29.2 to 32.1 oC during flowering to maturity phases reduced the wheat productivity drastically in this region of Indo-Gangetic plains. Grain yield declined by 399 kg ha-1 per 1 oC rise in Tmax during 50 % flowering to maturity stage. Considering grain yield vis-à-vis temperature regimes during flowering to maturity stage, the most important recommendation for the farmers of the region would be to finish wheat sowing before 25 November in order to enable them to escape terminal heat stress in wheat and thereby realizing higher grain yield. The anthesis-time management by manipulating sowing dates could be a realistic adaptation strategy for attaining optimum grain yield under changing climate scenario.

Author(s):  
B. H. Dadapeer ◽  
S. Sridhara ◽  
Pradeep Gopakkali

A field experiment was conducted to know the crop weather relationships under different sowing windows and hybrids in maize at the College of Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, during Kharif 2015. The experimental site is situated at 14°01 to 14°11 North latitude and 75°401 to 75°421 East longitude with an altitude of 650 meters above mean sea level. The experiment was laid out in a randomized complete block design (RCBD) with a factorial concept and replicated thrice. There were eight treatment combinations, including four-date of sowing (15th June, 30th June, 15th July and 30th July) and two hybrids (PAC-740 and CP-818). Maize sown on 15th June recorded significantly higher grain yield (7632.57 kg ha-1) as compared to other dates of sowing and among the hybrids, CP-818 (7060.72 kg ha-1) was found superior than PAC-740 (6776.93 kg ha-1). Grain yield had a highly significant positive correlation with weather parameters such as cumulative pan evaporation (0.85**), cumulative solar radiation (0.83**), cumulative rainfall (0.79**) and average relative humidity (0.75**) during silking to maturity stage. The variation in grain yield was primarily affected by average maximum temperature (69%) followed by cumulative sunshine hours (68%) and cumulative pan evaporation (66%) during sowing to maturity and lower variation was observed in average relative humidity (54%) during silking to maturity. From the present findings it can be inferred that sowing maize on June 15th with CP-818 hybrid can be a better option to get higher productivity in southern transition zone of Karnataka.


2015 ◽  
Vol 52 (1) ◽  
pp. 14-35 ◽  
Author(s):  
P. VIJAYA KUMAR ◽  
V. U. M. RAO ◽  
O. BHAVANI ◽  
A. P. DUBEY ◽  
C. B. SINGH

SUMMARYTo quantify the effect of thermal stress and photothermal quotient (PTQ) on yield components, eleven years experimental data of three cultivars (HD-2285, K-8804 and K-9107) under three sowing dates at Kanpur centre were analysed. Number of grains per ear (NG), grain weight per ear (GW) and 1000-grain weight (TG) were identified as prime yield contributing components in HD-2285, K-8804 and K-9107, respectively. GW was highly sensitive to maximum temperature (MXT) while NG was sensitive to minimum temperature (MNT) during jointing (JNT) to anthesis (ATS) as well as the total growing season in all the cultivars. In both HD-2285 and K-8804, optimum MXT and MNT during JNT to ATS are 22.7–24.6 and 7.0–7.9 °C, respectively for obtaining maximum NG. Optimum MXT for GW ranged from 15.8–17.3 °C during tillering (TLR) to JNT stage in K-8804 and K-9107 while it was 20.4 °C during JNT to ATS stage in HD-2285. MXT, MNT and PTQ of 23.6 °C, 9.2 °C and 25 MJ/m2/day/ °C, respectively during JNT to ATS in K-9107 were found optimum for higher TG.


2021 ◽  
Vol 22 (2) ◽  
pp. 148-157
Author(s):  
SUKAMAL SARKAR ◽  
ARGHA GHOSH ◽  
KOUSHIK BRAHMACHARI ◽  
KRISHNENDU RAY ◽  
MANOJ KUMAR NANDA ◽  
...  

In order to develop weather-based yield prediction models for rice and grass pea in coastal saline zone of West Bengal, the experiments were conducted with rice (cv. CR 1017) and grass pea (cv. Bio L 212) in the rainy and winter seasons, respectively of 2016-17 and 2017-18. Rice was sown in nursery bed on six different dates starting from June 15 to July 19 at weekly interval in both rainy seasons in two different land situations viz. medium upland and medium lowland. Likewise, grass pea was sown on six different dates just before harvesting of rice. It was observed that both early sown rice and grass pea resulted in higher grain yield and took more time to mature under medium lowland situation irrespective of sowing dates. Correlation study revealed that air temperature during sowing to transplanting phase exhibited significant positive correlation with grain of rice in medium upland (Tmax = 0.76**, Tmin = 0.69*) and medium lowland (Tmax = 0.93**, Tmin = 0.81**) situations. On the other hand, maximum temperature and total solar radiation during 100% emergence to 100% flowering stage were negatively associated with the grain yield of grass pea in both medium upland (Tmax = -0.69*, Accumulated solar radiation = -0.73**) and medium lowland (Tmax = -0.74**, Acc. solar radiation = -0.77**) situations. Grain yield of rice and grass pea could be predicted with 94.4% and 87.4% predictability. Pre-harvest forecasting of grain yield was possible with 77.3% for rice and 83.8% for grass pea.


2001 ◽  
Vol 49 (3) ◽  
pp. 293-297
Author(s):  
S. O. Bakare ◽  
M. G. M. Kolo ◽  
J. A. Oladiran

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


2017 ◽  
Vol 14 (2) ◽  
pp. 77-85
Author(s):  
Md Sohel Mahmud ◽  
Md Jafar Ullah ◽  
Md Abdullahil Baque ◽  
Lutfun Naher ◽  
Sayed Mohammad Mohsin

The experiment was conducted to determine the effect of irrigations and sowing dates on growth and yield performance of wheat in the experimental field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during the period of November 18, 2012 to March 30, 2013. The experiment was comprised of two factors, viz. factor A: two irrigations namely irrigation (I) and no irrigation i.e. control (I0), and factor B: three sowing dates such as S1: 1st sowing on 18 November, S2: 2nd sowing on 03 December and S3: 3rd sowing on 18 December. The experiment was laid out in a split plot design with three replications. Irrigation was assigned in the main plot, while sowing time was in the sub-plots. Data on grain yield and different yield contributing characters were taken after harvest. Results indicated that the highest grain yield was obtained with I (2.915 t ha-1) and S1 (2.983 t ha-1). The interaction of irrigation (I) and sowing on 18 November (S1) showed the maximum yield (3.387t ha-1), spike length (17.08 cm), 1000 grain weight (43.4 g), spikelets spike-1 (20.03) and grain spike-1 (65.58) of wheat.The Agriculturists 2016; 14(2) 77-85


2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


Author(s):  
Alessandra M. de L. Naoe ◽  
Joênes M. Peluzio ◽  
Leonardo J. M. Campos ◽  
Lucas K. Naoe ◽  
Roberta A. e Silva

ABSTRACT This study aimed to verify the effect of co-inoculation, association between Azospirillum brasilense and Bradyrhizobium japonicum bacteria, on soybean plants subjected to water deficit at two sowing dates. Two field experiments were conducted at the Universidade Federal de Tocantins, campus of Palmas, Brazil, in 2016. The experimental design was randomized blocks in a split-split-plot arrangement with four repetitions, where the plots consisted of two irrigation depths (100 and 25% of crop evapotranspiration - ETc), the subplots was composed of two methods of inoculant application (inoculation with Bradyrhizobium japonicum and co-inoculation with Azospirillum brasilense + Bradyrhizobium japonicum) and the sub-subplots comprised two soybean cultivars (TMG 132 and ANTA 82). The cultivars responded differently to the sowing dates. Co-inoculation did not influence grain yield under full irrigation conditions (100% ETc), in neither cultivar evaluated. However, under the water deficit condition (25% ETc), the grain yield of the cultivar TMG 132 increased 77.20%, indicating that there are different responses of interaction between Azospirillum brasilense, plant genotype and sowing dates.


Sign in / Sign up

Export Citation Format

Share Document