Gene Therapy and Gene Delivery to the Brain Using Viral Vectors

2016 ◽  
Vol 3 (1) ◽  
pp. 20
Author(s):  
Can Akpinaroglu ◽  
Gokben Sayar
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danielle Weber-Adrian ◽  
Rikke Hahn Kofoed ◽  
Joseph Silburt ◽  
Zeinab Noroozian ◽  
Kairavi Shah ◽  
...  

AbstractNon-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.


2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


2016 ◽  
Vol 12 (8) ◽  
pp. 2251-2260 ◽  
Author(s):  
Andrea Pensado ◽  
Francisco J. Diaz-Corrales ◽  
Berta De la Cerda ◽  
Lourdes Valdés-Sánchez ◽  
Ana Aramburu del Boz ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1216
Author(s):  
Seigo Kimura ◽  
Hideyoshi Harashima

The era of the aging society has arrived, and this is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Such neurological disorders are serious costly diseases that have a significant impact on society, both globally and socially. Gene therapy has great promise for the treatment of neurological disorders, but only a few gene therapy drugs are currently available. Delivery to the brain is the biggest hurdle in developing new drugs for the central nervous system (CNS) diseases and this is especially true in the case of gene delivery. Nanotechnologies such as viral and non-viral vectors allow efficient brain-targeted gene delivery systems to be created. The purpose of this review is to provide a comprehensive review of the current status of the development of successful drug delivery to the CNS for the treatment of CNS-related disorders especially by gene therapy. We mainly address three aspects of this situation: (1) blood-brain barrier (BBB) functions; (2) adeno-associated viral (AAV) vectors, currently the most advanced gene delivery vector; (3) non-viral brain targeting by non-invasive methods.


2017 ◽  
Vol 5 (18) ◽  
pp. 3253-3276 ◽  
Author(s):  
Ihsan Ullah ◽  
Khan Muhammad ◽  
Mary Akpanyung ◽  
Abdelilah Nejjari ◽  
Agnaldo Luis Neve ◽  
...  

Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


2017 ◽  
Vol 29 (04) ◽  
pp. 1750027 ◽  
Author(s):  
Ko-Chung Yen ◽  
I-Hua Chen ◽  
Feng-Huei Lin

A major aim of gene therapy is the efficient and specific delivery of therapeutic gene into the desired target tissues. Development of reliable vectors is a major challenge in gene therapy. The aim of this study is to develop calcium phosphate nanoparticles as novel non-viral vectors for the gene delivery system. Calcium phosphate nanoparticles were prepared by water-in-oil microemulsion method with a water to surfactant molar ratio, Wo [Formula: see text] 2–10. This paper studies the design and synthesis of ultra-low size, highly monodispersed DNA doped calcium phosphate nanoparticles of size around 100[Formula: see text]nm in diameter. The structure of DNA-calcium phosphate nanocomplex observed by TEM was displayed as a shell-like structure. This study used pEGFP as a reporter gene. The encapsulating efficiency to encapsulate DNA inside the nanoparticles was greater than 80%. In the MTT test, both calcium phosphate nanoparticles and DNA-calcium phosphate nanocomplex have no negative effect for 293T cells. By gel electrophoresis of free and entrapped pEGFP DNA, the DNA encapsulated inside the nanoparticles was protected from the external DNaseI environment. In vitro transfection studies in 293T cell-line, the DNA-calcium phosphate nanocomplex could be used safely to transfer the encapsulated DNA into the 293T cells and expression green fluorescent protein. The characteristic of DNA-calcium phosphate nanocomplex to deliver DNA belongs to slow release. The property of DNA-calcium phosphate nanocomplex was fit in the requirement of non-viral vectors for the gene delivery system.


2005 ◽  
Vol 4 (6) ◽  
pp. 615-625 ◽  
Author(s):  
Sushma Kommareddy ◽  
Sandip B. Tiwari ◽  
Mansoor M. Amiji

Significant advances in the understanding of the genetic abnormalities that lead to the development, progression, and metastasis of neoplastic diseases has raised the promise of gene therapy as an approach to medical intervention. Most of the clinical protocols that have been approved in the United States for gene therapy have used the viral vectors because of the high efficiency of gene transfer. Conventional means of gene delivery using viral vectors, however, has undesirable side effects such as insertion of mutational viral gene into the host genome and development of replication competent viruses. Among non-viral gene delivery methods, polymeric nanoparticles are increasingly becoming popular as vectors of choice. The major limitation of these nanoparticles is poor transfection efficiency at the target site after systemic administration due to uptake by the cells of reticuloendothelial system (RES). In order to reduce the uptake by the cells of the RES and improve blood circulation time, these nanoparticles are coated with hydrophilic polymers such as poly(ethylene glycol) (PEG). This article reviews the use of such hydrophilic polymers employed for improving the circulation time of the nanocarriers. The mechanism of polymer coating and factors affecting the circulation time of these nanocarriers will be discussed. In addition to the long circulating property, modifications to improve the target specificity of the particles and the limitations of steric protection will be analyzed.


2019 ◽  
Vol 2 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Kiel Sung Yong ◽  
◽  
Wan Kim Sung ◽  
◽  
◽  
...  

Gene therapy is the unique method for the use of genetic materials such as Messenger ribonucleic acid (mRNA), plasmid deoxyribonucleic acid (pDNA), and small interfering ribonucleic acid (siRNA) into specific host-cells for the treatment of inherited disorders in any diseases. The successful way to utilize the gene therapy is to develop the efficient cancer gene delivery systems. In this paper, the successful and efficient gene delivery systems are briefly reviewed on the basis of bio-reducible polymeric systems for cancer therapy. The viral gene delivery systems such as RNA-based viral and DNA-based viral vectors are also discussed. The development of bio-reducible polymer for gene delivery system has briefly discussed for the efficient cancer gene delivery of viral vectors and non-viral vectors.


Sign in / Sign up

Export Citation Format

Share Document