scholarly journals Load Distribution Behaviour of Bored Pile in Various Soil Formation: Rock Socket in Limestone, Schist and Sandstone

2016 ◽  
Vol 77 (2) ◽  
Author(s):  
Fazela Mustafa ◽  
Yasmin Ashaari ◽  
Aminuddin Baki

Rock socketed bored pile is a solution when the load from the structure is very high and/or accessible bearing surface hasan inadequate bearing capacity. The study is based on instrumented bored pile socketing into different types of rock namely.limestone, schist and sandstone at three sites. The result for three (3) test piles namely PTP1, UTP-1 and TP2 shows most of the load are resisted by friction rather than end bearing at the pile working load. The load apportioned to end bearing at higher loads varies for the three test piles. Comparison of observed mobilised skin friction in the rocks with empirical methods indicates that prediction values from Williams and Pells [1] over design for two out of the three test piles and that by Hovarth [2] are under design for two out of the three test piles.

2014 ◽  
Vol 17 (3) ◽  
pp. 86-93
Author(s):  
Nhat Dai Vo

In this paper, the determination of bearing capacity of bored pile using the SPT number and undrained shear strength is presented. The advantages of this method are simple and always feasible, especially for bridge and pier designing in case of expressway projects constructed on soft soils. The 22TCN 272-05 standard is used to calculate bearing capacity of bored pile including skin friction and end bearing capacities. An applicable form for calculating the bearing capacity of bored pile is made. An example is presented and the applied result is shown.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 507
Author(s):  
Luca Seravalli ◽  
Claudio Ferrari ◽  
Matteo Bosi

In this paper, we model the electrical properties of germanium nanowires with a particular focus on physical mechanisms of electrical molecular sensing. We use the Tibercad software to solve the drift-diffusion equations in 3D and we validate the model against experimental data, considering a p-doped nanowire with surface traps. We simulate three different types of interactions: (1) Passivation of surface traps; (2) Additional surface charges; (3) Charge transfer from molecules to nanowires. By analyzing simulated I–V characteristics, we observe that: (i) the largest change in current occurs with negative charges on the surfaces; (ii) charge transfer provides relevant current changes only for very high values of additional doping; (iii) for certain values of additional n-doping ambipolar currents could be obtained. The results of these simulations highlight the complexity of the molecular sensing mechanism in nanowires, that depends not only on the NW parameters but also on the properties of the molecules. We expect that these findings will be valuable to extend the knowledge of molecular sensing by germanium nanowires, a fundamental step to develop novel sensors based on these nanostructures.


2012 ◽  
Vol 16 (02) ◽  
pp. 192-199 ◽  
Author(s):  
H. Yasemin Yenilmez Akkurt ◽  
Ali ihsan Okur ◽  
Ahmet Gül

In this study, a synthetic procedure for unsymmetrical metallophthalocyanines of the form M[Pc(AB3)], where A and B refer to two different types of peripheral functionality, has been developed and the new compounds have been converted to monomeric and dimeric palladium complexes. Asymmetrically substituted phthalocyanines were synthesized with the well-known statistical condensation method, by using two differently substituted precursors, namely 4-(2-ethoxyethoxy)-1-2-dicyanobenzene (1) and 4-{4-[Z/E]-phenylazo]-1-naphthyl}oxy-1,2-dicyanobenzene (2). Consequently, electron-donating 2-ethoxyethoxy groups and electron-withdrawing palladium complex are present in the same structure. Cyclopalladation was performed with [Pd(PhCN)2Cl2] to yield the bis-μ-chloro-bridged dimers and subsequently, the corresponding monomers were obtained by refluxing with three equivalents of potassium acetylacetonate. The resulting products were purified by column chromatography and characterized by several chemical and spectroscopic analysis methods. All compounds have very high solubility in organic solvents due to the presence of 2-ethoxyethoxy moiety.


2015 ◽  
Vol 229 (1-2) ◽  
Author(s):  
Beatriz H. Juarez ◽  
Luis M. Liz-Marzán

AbstractThe integration of different types of materials in a single hybrid system allows the combination of multiple functionalities, which can even be used in conjunction with each other. This strategy has been exploited in nanoscale systems for the creation of so-called smart nanomaterials. Within this category, the combination of inorganic nanoparticles with stimuli-responsive microgels is of very high interest because of the wide variety of potential applications. We present here a short overview of this type of materials in which the nano- and micro-scales get nicely integrated, with a great potential to expand the range of technological applications. We focus mainly on the integration of metal nanoparticles, either by themselves or in combination with semiconductor and magnetic nanoparticles. Various examples of the synergic properties that can be obtained are described, as well as the possibility to extract useful information when optical tweezers are used to manipulate single particles. We expect that this review will stimulate additional research in this field.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


2017 ◽  
Vol 742 ◽  
pp. 636-643 ◽  
Author(s):  
Florentin Pottmeyer ◽  
Markus Muth ◽  
Kay André Weidenmann

An efficient implementation of lightweight design is the use of continuous carbon fiber reinforced plastics (CFRP) due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join metal-based attachments to structural CFRP parts in the context of multi-material design. They differ from other mechanical fasteners and have distinctive benefits. In particular, drilling of the components to be joined can be avoided and, depending on the preforming, fiber continuity can be maintained using such elements. Thus, no local bearing stress is anticipated. Previous work published by the authors [1] dealt with a systematic research of the influence of different types of stresses on the load bearing capacity of welded inserts. This contribution aims at the investigation of the performance of shape-optimized inserts under the same types of loading to compare with the results of the welded inserts serving as a reference. For that purpose, the respective load bearing capacities were evaluated after preinduced damages from impact tests and thermal cycling. In addition, dynamic high-speed tensile tests (pull-out) were conducted under different loading velocities. It is shown that the load bearing capacities increased up to 19% for high velocities (250 mm/s) in comparison to quasi-static loading conditions (1.5 mm/min) showing an obvious strain rate dependency of the CFRP. Quasi-static residual strength measurements under tensile loading identified the influence of the respective preinduced damages of the insert. Influence of the thermal loading condition was evaluated by placing the specimens in a climate chamber and exposing it to various numbers of temperature cycles from-40 °C to +80 °C with a duration time of 1.5 hours each. Here, it turned out that already 10 temperature cycles decreased the quasi-static load bearing capacity up to 31%. According to DIN EN 6038 the specimens were loaded with different impact energies and the residual strength were measured carrying out pull-out tests. It could be shown that the damage tolerance is significantly lower for the shape-optimized insert due to failure-critical delamination. The optimized insert also endured lower impact energies and the influence on the performance was higher.


Author(s):  
L. Hang ◽  
G. Y. Cai

Abstract. The detection and reconstruction of building have attracted more attention in the community of remote sensing and computer vision. Light detection and ranging (LiDAR) has been proved to be a good way to extract building roofs, while we have to face the problem of data shortage for most of the time. In this paper, we tried to extract the building roofs from very high resolution (VHR) images of Chinese satellite Gaofen-2 by employing convolutional neural network (CNN). It has been proved that the CNN is of a higher capability of recognizing detailed features which may not be classified out by object-based classification approach. Several major steps are concerned in this study, such as generation of training dataset, model training, image segmentation and building roofs recognition. First, urban objects such as trees, roads, squares and buildings were classified based on random forest algorithm by an object-oriented classification approach, the building regions were separated from other classes at the aid of visually interpretation and correction; Next, different types of building roofs mainly categorized by color and size information were trained using the trained CNN. Finally, the industrial and residential building roofs have been recognized individually and the results have been validated individually. The assessment results prove effectiveness of the proposed method with approximately 91% and 88% of quality rates in detection industrial and residential building roofs, respectively. Which means that the CNN approach is prospecting in detecting buildings with a very higher accuracy.


The complexity of human olfaction is very high and the importance of being able to measure it directly, objectively and qualitatively has led experts to search for mechanisms that can be applied. Human beings use this sense, which is one of the oldest, to recognize danger and distinguish between pleasant and unpleasant odors. Smells are mixtures of molecules that, at different concentrations in the inhaled air, stimulate the olfactory area and are recognized at the brain level. Therefore, there is a coding and decoding system. Human olfactometer techniques use equipment designed to be able to measure its intensity and quality of volatile substances. If we are able to measure this sense, we will be able to know its variations and be able to make clinical diagnoses in normal and pathological conditions and diagnose the losses that occur in certain infectious, degenerative diseases, traumatic processes and other variants. For many years, systems have been developed that can measure subjective olfaction in humans, as well as objective forms, but it is also true that there is no equipment available that is fast, simple handling and that can be applied in daily clinical services. Aim of the Study Present the recent achievements in olfactometer technology; Elaborate the scientific articles about olfactometry published mainly in the last 10 years; To gather the information published in the last years in relation to the usefulness, existence in the market and purposes of equipment that can measure the odors, what we will call the Smell-o-meter or olfactometer for human use. Material and Methods: In the first part of this research we will gather most of the information existing so far in international bibliography, as well as the achievements and utilities obtained to date. Following, we will analyze all the new concepts related to smell-o-meters devices that exist on the market and assess the possibility, based on what has been done so far, to seek new practical systems for application in the medical field.


Author(s):  
Alex Micael Dantas de Sousa ◽  
Yuri Daniel Jatobá Costa ◽  
Luiz Augusto da Silva Florêncio ◽  
Carina Maria Lins Costa

abstract: This study evaluates load variations in instrumented prestressed ground anchors installed in a bored pile retaining wall system in sandy soil. Data were collected from instrumentation assembled in the bonded length of three anchors, which were monitored during pullout tests and during different construction phases of the retaining wall system. Instrumentation consisted of electrical resistance strain gauges positioned in five different sections along the bonded length. Skin friction distributions were obtained from the field load measurements. Results showed that the skin friction followed a non-uniform distribution along the anchor bonded length. The mobilized skin friction concentrated more intensely on the bonded length half closest to the unbonded length, while the other half of the bonded length developed very small skin friction. The contribution of the unbonded length skin friction to the overall anchor capacity was significant and this should be accounted for in the interpretation of routine anchor testing results. Displacements applied to the anchor head were sufficient to mobilize the ultimate skin friction on the unbonded length, but not on the bonded length. Performance of loading-unloading stages on the ground anchor intensified the transfer of load from the unbonded length to the bonded length. Long-term monitoring of the anchor after lock-off revealed that the load at the anchor bonded length followed a tendency to reduce with time and was not significantly influenced by the retaining wall construction phases.


Sign in / Sign up

Export Citation Format

Share Document