scholarly journals Synthesis of poly(γ-tert-butyl L-glutamate): influence of polymerization conditions

2019 ◽  
Vol 16 (3) ◽  
pp. 25
Author(s):  
Phung Thi Thuy Dung ◽  
Nguyen Thi Le Thu

This work presents the synthesis and characterization of poly(γ-tert-butyl L-glutamate) (PtBuLG) via a living ring-opening polymerization procedure of γ-tert-butyl L-glutamate N-carboxyanhydride (tBuLG-NCA). The reaction conditions were investigated to optimize the polymerization yield and molecular weight polydispersity. The synthesized PtBuLG was characterized using nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and attenuated total reflection-Fourier transform infrared (ATR FT-IR. Finally, hydrolysis of PtBuLG resulted in poly(L-glutamic acid) (PLGA).

e-Polymers ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 217-226 ◽  
Author(s):  
Yinfeng Shi ◽  
Seema Agarwal

AbstractThe copolymers of 2-methylene-1,3-dioxepane (MDO) and N-phenyl maleimide (NPM) prepared by radical polymerization with high thermal stability, glass transition temperature and optical transparency are presented. The polymers made under specific reaction conditions, i.e., 120°C and high amounts of MDO, had degradable ester units, which were formed via radical ring-opening polymerization of MDO. The formation of charge-transfer complex between MDO and NPM also led to the formation of high-molar-mass copolymers by simple mixing and heating of monomers without the use of any initiator. Structural characterization of the copolymers including mechanistic studies was carried out using nuclear magnetic resonance spectroscopy, and their thermal properties were studied using differential scanning calorimetry and thermogravimetric analysis.


Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


2012 ◽  
Vol 506 ◽  
pp. 158-161 ◽  
Author(s):  
A. Jaidee ◽  
Pornchai Rachtanapun ◽  
S. Luangkamin

N,O-Carboxymethyl chitosans were synthesized by the reaction between shrimp, crab and squid chitosans with monochloroacetic acid under basic conditions at 50°C. The mole ratio of reactants was obtained from various reaction conditions of shrimp chitosan polymer and oligomer types. The mole ratio 1:12:6 of chitosan:sodium hydroxide:monochloroacetic acid was used for preparing carboxymethyl of chitosan polymer types while carboxymethyl of chitosan oligomer types were used the mole ratio 1:6:3 of chitosan:sodium hydroxide:monochloroacetic acid. The chemical structure was analyzed by fourier transformed infrared spectroscopy (FT-IR) and proton nuclear magnatic resonance spectroscopy (1H-NMR). The FT-IR was used for confirm the insertion of carboxymethyl group on chitosan molecules. The 1H-NMR was used for determining the degree of substitution (DS) of carboxymethylation at hydroxyl and amino sites of chitosans. Carboxymethyl chitosan samples had the total DS of carboxymethylation ranging from 1.0-2.2. The highest of DS of carboxymethylation was from shrimp chitosan oligomer type.


1994 ◽  
Vol 48 (10) ◽  
pp. 1208-1212 ◽  
Author(s):  
J. J. Benítez ◽  
I. Carrizosa ◽  
J. A. Odriozola

The reactivity of a Lu2O3-promoted Rh/Al2O3 catalyst in the CO/H2 reaction is reported. Methane, heavier hydrocarbons, methanol, and ethanol are obtained. In situ DRIFTS has been employed to record the infrared spectra under the actual reaction conditions. The structure of the observed COads DRIFTS bands has been resolved into its components. The production of oxygenates (methanol and ethanol) has been correlated with the results of the deconvolution calculation. Specific sites for the production of methanol and ethanol in the CO/H2 reaction over a Rh,Lu2O3/Al2O3 catalyst are proposed.


1970 ◽  
Vol 46 (3) ◽  
pp. 375-378 ◽  
Author(s):  
MM Islam ◽  
SM Masum ◽  
MM Rahman ◽  
AA Shaikh

The present investigation described the effective preparation of glucosamine hydrochloride (GluHCl) from chitin which was extracted from indigenous shrimp shell. GluHCl has attracted much attention owing to its therapeutic activity in osteoarthritis and widely used dietary supplement. The key step involved was extraction of chitin from shrimp skeleton and then hydrolysis of chitin by concentrated hydrochloric acid. The reaction proceeds via break down of glycoside linkage. Structural analysis was carried out by melting point, TLC, FT-IR, elemental analysis and all the data were compared with that of standard GluHCl. The elemental (C, 32.75; H, 6.51; N, 6.20) analysis is good concord with the calculated value (C, 33.42; H, 6.54; N, 6.50). Absence of v max at 1726 cm-1 indicates that GluHCl is a deacetylated product of chitin. The yields of the product mainly depend on reaction conditions. Maximum yield (63.5%) was obtained when chitin was hydrolyzed with concentrated HCl for 1.30 h. Key words: Shrimp shell; Chitin, Acid hydrolysis; Glucosamine hydrochloride Osteoarthritis. DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9046 BJSIR 2011; 46(3): 375-378


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


2008 ◽  
Vol 47-50 ◽  
pp. 294-297 ◽  
Author(s):  
Xiu Wei Jia ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

A novel flame retardant polymethylsilsesquioxane (PMSQ) was successfully obtained via combination of non-hydrolytic and hydrolytic sol-gel routes. Chemical structure of the resultant PMSQ was determined by nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectrometry and powder X-ray diffraction, respectively. All the measurements demonstrated that the product possessed regular structure with chain-to-chain width of 0.87nm and chain thickness of 0.40nm. Weight average molecular weight of PMSQ was measured to be 3.5×105 using gel permeation chromatography. Numerical simulations of the molecular structure suggested that PMSQ should exhibit cis-isotactic configuration and double helical conformation at undisturbed condition.


Author(s):  
G. Dayana Jeyaleela ◽  
S. Irudaya Monisha ◽  
J. Rosaline Vimala ◽  
A. Anitha Immaculate

Objective: Natural products from medicinal plants, either as isolated compounds or as standardized plant extracts exhibit promising source of medicinal activity against various diseases. The aim of the present work was to make an attempt of isolation of bioactive principle and characterization of the isolated compound, from the medicinal plant Melia dubaiMethods: The extraction was done by a cold percolation method and the compound was separated and isolated by chromatography technique such as a thin layer chromatography (TLC), column chromatography and high-performance liquid chromatography (HPLC). The isolated compound was crystallized and the structural characterization of the isolated compound was made using UV-Visible, FT-IR, 1H-NMR, GC-MS and MS techniques which confirmed the structure of the isolated compound.Results: The separated and isolated compound was characterized by both physical and spectral methods like Ultraviolet-Visible spectroscopy (UV-Visible), Fourier transform infrared spectroscopy (FT-IR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Gas chromatography-mass spectrometry (GC-MS), and Mass spectrometry(MS). Based on the studies, organizational characteristics of one bioactive principle were deciphered. The results revealed that the isolated species is 2-chlorobenzimidazole and it agreed well with the reported value and spectra for 2-chlorobenzimidazole.Conclusion: The above results obtained in this research work clearly indicated the promising occurrence of 2-chlorobenzimidazole in Media dubia plant leaves. The future scope of these studies may guide us to view the biological activity of the isolated compound.


2014 ◽  
Vol 1053 ◽  
pp. 268-275
Author(s):  
Hong Wen Zhang ◽  
Shi Long Zhou ◽  
Yang Zhang ◽  
Yan Jiang ◽  
Qiang Yu

Different molecular weight of block coupling agents with well-defined structures have been synthesized successfully by atom transfer radical polymerization (ATRP) from styrene (St), butyl methacrylate (BMA) and 3-methoxyacryloyl-propyltrimethoxyl silicon (KH-570) are as monomer. The structures and compositions of macromolecular coupling agents have been characterized by means of infrared spectrum (FT-IR), ultraviolet spectrum (UV), nuclear magnetic resonance spectroscopy (1H-NMR) and gel permeation chromatography (GPC). And their effects on the polystyrene/silica (PS/SiO2) composite materials have been studied. The results show that interface compatibility and mechanical properties of composite materials containing macromolecule coupling agents are improved significantly. The composite materials with block macromolecular coupling agents possess more excellent comprehensive performance. Furthermore, the impact strength increased by 110% when comparing with composite materials which are not modified by the coupling agents.


2007 ◽  
Vol 95 (8) ◽  
Author(s):  
Cynthia-May S. Gong ◽  
Frédéric Poineau ◽  
Kenneth R. Czerwinski

A novel dry synthesis for the uranium(VI) dioxo-diacetohydroxamate (UAHA) complex has been developed. The complex was generated in >80% yield by mechanically grinding solid uranyl acetate dihydrate (UAc) with solid acetohydroxamic acid in stoichiometric amounts. The resulting UOThe UAHA solid was extensively characterized by ultraviolet-visible (UV-vis), Fourier-transform infrared (FT-IR), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The compound did not fluoresce after laser excitation. Proton nuclear magnetic resonance (NMR) spectra were obtained of the complex in DThe easy synthesis and purification of UAHA enables researchers to strictly control reaction conditions; to eliminate interfering salts and water; and to study the complex in the solid-phase.


Sign in / Sign up

Export Citation Format

Share Document