1H-NMR Analysis of Degree of Substitution in N,O-Carboxymethyl Chitosans from Various Chitosan Sources and Types

2012 ◽  
Vol 506 ◽  
pp. 158-161 ◽  
Author(s):  
A. Jaidee ◽  
Pornchai Rachtanapun ◽  
S. Luangkamin

N,O-Carboxymethyl chitosans were synthesized by the reaction between shrimp, crab and squid chitosans with monochloroacetic acid under basic conditions at 50°C. The mole ratio of reactants was obtained from various reaction conditions of shrimp chitosan polymer and oligomer types. The mole ratio 1:12:6 of chitosan:sodium hydroxide:monochloroacetic acid was used for preparing carboxymethyl of chitosan polymer types while carboxymethyl of chitosan oligomer types were used the mole ratio 1:6:3 of chitosan:sodium hydroxide:monochloroacetic acid. The chemical structure was analyzed by fourier transformed infrared spectroscopy (FT-IR) and proton nuclear magnatic resonance spectroscopy (1H-NMR). The FT-IR was used for confirm the insertion of carboxymethyl group on chitosan molecules. The 1H-NMR was used for determining the degree of substitution (DS) of carboxymethylation at hydroxyl and amino sites of chitosans. Carboxymethyl chitosan samples had the total DS of carboxymethylation ranging from 1.0-2.2. The highest of DS of carboxymethylation was from shrimp chitosan oligomer type.

2021 ◽  
Author(s):  
Hongying Chu ◽  
Huabei Li ◽  
Xiaoyan Sun ◽  
Yaowang Zhang

Abstract In this paper, we synthesized a kind of bio-based plasticizer epoxidized linoleic acid cardanol ester(ELCE) from cardanol and linoleic acid. Its chemical structure was characterized with FT-IR and 1H NMR. Polyvinyl chloride(PVC) blends plasticized with ELCE were prepared via thermoplastic blending with torque rheometer. The performance including torque, mechanical property, thermal stability, plasticizing property and migration resistance of plasticized PVC blends were investigated and compared with plasticized PVC blends with commercial plasticizer dioctyl phthalate(DOP). The results showed that ELCE improved thermal stability of PVC blends. ELCE played more excellent plasticizing effect on PVC blends than DOP. The better solvent extraction resistance and volatile resistance of ELCE make it impossible to completely replace DOP in PVC products.


2013 ◽  
Vol 61 (1) ◽  
pp. 145-148 ◽  
Author(s):  
Tanvir Muslim ◽  
Mohammad Habibur Rahman ◽  
HOsne Ara Begum ◽  
Md. Azizur Rahman

Chitin was extracted from the fish scales of Labeo rohita and chitosan was successfully prepared from it by deacetylation reaction. The prepared chtiosan was characterized by FT-IR spectral analysis and degree of decetylation was determined by pH-metric titration. The molecular weight of chitosan was estimated by viscometric method. Chitosan was converted into its carboxymethyl derivative using alkali and monochloroacetic acid. The prepared carboxymethyl chitosan was characterized by FT-IR spectral analysis and degree of substitution was estimated. Dhaka Univ. J. Sci. 61(1): 145-148, 2013 (January) DOI: http://dx.doi.org/10.3329/dujs.v61i1.15116


2014 ◽  
Vol 1053 ◽  
pp. 268-275
Author(s):  
Hong Wen Zhang ◽  
Shi Long Zhou ◽  
Yang Zhang ◽  
Yan Jiang ◽  
Qiang Yu

Different molecular weight of block coupling agents with well-defined structures have been synthesized successfully by atom transfer radical polymerization (ATRP) from styrene (St), butyl methacrylate (BMA) and 3-methoxyacryloyl-propyltrimethoxyl silicon (KH-570) are as monomer. The structures and compositions of macromolecular coupling agents have been characterized by means of infrared spectrum (FT-IR), ultraviolet spectrum (UV), nuclear magnetic resonance spectroscopy (1H-NMR) and gel permeation chromatography (GPC). And their effects on the polystyrene/silica (PS/SiO2) composite materials have been studied. The results show that interface compatibility and mechanical properties of composite materials containing macromolecule coupling agents are improved significantly. The composite materials with block macromolecular coupling agents possess more excellent comprehensive performance. Furthermore, the impact strength increased by 110% when comparing with composite materials which are not modified by the coupling agents.


2013 ◽  
Vol 683 ◽  
pp. 25-29 ◽  
Author(s):  
Lan Lan He ◽  
Yi Zhang ◽  
Zhao Lu Qin ◽  
Yan Hua Lan ◽  
Ding Hua Li ◽  
...  

A novel non-halogen flame retardant APESP, cyclotriphosphazene containing six aminopropyltriethoxysilicone functional groups N3P3[NH(CH2)3Si(OCH2CH3)3]6, was synthesized by menas of SN2 nucleophilic substitution reaction, using hexachlorocyclotriphosphazene(HCCP) and 3-aminopropyltriethoxy-silane (KH550) as material. Firstly the industrial grade HCCP was purified through recrystallization and sublimation. Then the reaction process was investigated to prompt the yield, and the optimum reaction conditions were as follows: triethylamine as acid-binding agent, tetrahydrofuran as solvent, HCCP/KH550/triethylamine molar ratio 1:7.2:7.2, dripping time: 1 hour, temperature: 67°C and reaction time: 20h. Maximum APESP yield reached 94.3%. The chemical structure and purity was characterized by element analysis, Fourier-transformed infrared spectroscopy (FTIR), mass spectrum, gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) analysis. The results showed that the structure of synthesized product is consistent with the theoretical structure, in which the chlorine atoms were completely substituted. The charge distribution calculation of HCCP and KH550 confirmed the reaction mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Ruiqi Wang ◽  
Bing Zhou ◽  
Zichen Wang

Lignin was oxidized by NaOCl, and the main product of the reaction was named lignin-derived polycarboxylic acids (LPCAs). The effect of the reaction conditions was studied. With the mix ratio [n(NaOCl)/m(lignin)] increasing, the content of carboxyl of LPCAs increased. When the reaction temperature or the reaction time increased, the content of carboxyl decreased in different degrees. After the oxidation by NaOCl, the content of hydroxyl and methoxyl of lignin decreased, and the molecular weight of lignin decreased as well. The FT-IR and 1H-NMR spectrum of lignin suggested that the benzene rings of lignin were disrupted after the oxidation. A possible mechanism of the oxidation of lignin by sodium hypochlorite is supposed to briefly demonstrate the reason that the benzene rings were disrupted and the content of carboxyl increased. Finally, an application example shows that LPCAs can strengthen the mechanical properties of waterborne polyurethane elastomers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jiaoxia Sun ◽  
Xiqin Ma ◽  
Xiang Li ◽  
Jianxin Fan ◽  
Qingkong Chen ◽  
...  

A ternary cationic polyacrylamide (CPAM) with the hydrophobic characteristic was prepared through ultraviolet- (UV-) initiated polymerization technique for the estrone (E1) environmental estrogen separation and removal. The monomers of acrylamide (AM), acryloyloxyethyl-trimethyl ammonium chloride (DAC), and acryloyloxyethyl dimethylbenzyl ammonium chloride (AODBAC) were used to synthesize the ternary copolymer (PADA). Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetry/differential scanning calorimetry (TG/DSC), and scanning electron microscopy (SEM) were employed to characterize the structure, thermal decomposition property, and morphology of the polymers, respectively. FT-IR and 1H NMR results indicated the successful formation of the polymers. Besides, with the introduction of hydrophobic groups (phenyl group), an irregular and porous surface morphology and a favorable thermal stability of the PADA were observed by SEM and TG/DSC analyses, respectively. At the optimal condition (pH = 7, flocculant dosage = 4.0 mg/L and E1 concentration = 0.75 mg/L), an excellent E1 flocculation performance (E1 removal rate: 90.1%, floc size: 18.3 μm, and flocculation kinetics: 22.69×10-4 s−1) was acquired by using the efficient flocculant PADA-3 (cationic degree = 40%, and intrinsic viscosity = 6.30 dL·g−1). The zeta potential and floc size analyses were used to analyze the possible flocculation mechanism for the E1 removal. Results indicated that the charge neutralization, adsorption, and birding effects were dominant in the E1 removal progress.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Hamid Beyzaei ◽  
Reza Aryan ◽  
Zahra Keshtegar

Synthesis of new imidazolidine and tetrahydropyrimidine derivatives 3a, b and 4a–c as cyclic 1,3-diamines under two reaction conditions (A and B) is described. Under reaction conditions-A, a suspension of (E)-2-cyano-2-(oxazolidin-2-ylidene)ethanethioamide 1 (1 eq.) and diaminoalkanes 2a–e (2 eq.) in absolute ethanol is heated under reflux for 16–22 h to afford 3a, b and 4a–c. Alternatively, under reaction conditions-B, a solution of thioamide 1 (1 eq.) in diaminoalkanes 2a–e (3 eq.) is stirred under solvent-free conditions at room temperature for 3 days to give desired products. Reaction conditions-A for having higher yields, shorter reaction times, and required less diamines is more effective than reaction conditions-B. Oxazolidine ring opening is observed by reacting compound 1 with all of the diamines 2a–e, but the thioamide group only reacts with nonbulky diamines 2a, b. The chemical structures of novel compounds were confirmed by 1H NMR, 13C NMR, elemental analysis, and FT-IR spectrometry.


2019 ◽  
Vol 16 (3) ◽  
pp. 25
Author(s):  
Phung Thi Thuy Dung ◽  
Nguyen Thi Le Thu

This work presents the synthesis and characterization of poly(γ-tert-butyl L-glutamate) (PtBuLG) via a living ring-opening polymerization procedure of γ-tert-butyl L-glutamate N-carboxyanhydride (tBuLG-NCA). The reaction conditions were investigated to optimize the polymerization yield and molecular weight polydispersity. The synthesized PtBuLG was characterized using nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and attenuated total reflection-Fourier transform infrared (ATR FT-IR. Finally, hydrolysis of PtBuLG resulted in poly(L-glutamic acid) (PLGA).


2013 ◽  
Vol 785-786 ◽  
pp. 690-692
Author(s):  
Yong Ming Zhang ◽  
Yi Wei Wang ◽  
Mei Zhang ◽  
Jian Fang Liu ◽  
Jie Si ◽  
...  

The liquid crystal material with trifluoromethyl substitutent is a very important liquid crystal monomer to combine mixture in the application of display area. In this paper, a kind of liquid crystal material with trifluoromethyl substitutent was synthesized by traditional method of Sonogashira coupling reaction, the reaction mechanism and reaction conditions were then obtained. In addition, the synthesized compound was characterized by FT-IR and1H-NMR to confirm the consistent structure with target compound.


2007 ◽  
Vol 14 (06) ◽  
pp. 1129-1133 ◽  
Author(s):  
SHILPI MISHRA ◽  
V. K. TYAGI

In this study, an attempt has been made to synthesize esteramide quat by esterification of palm fatty acids with 1(2-hydroxyethyl piperazine) followed by quaternization with dimethyl sulphate (DMS). The optimum reaction conditions for esterification of palm fatty acids and 1(2-hydroxyethyl piperazine) were found to be 170°C reaction temperature and 150 mmHg pressure. The obtained esteramide was subjected to quaternization with different molar ratios of DMS. The consequences revealed that esteramide to DMS ratio of 1 : 0.95 and duration of quaternization for 2 h yielded esteramide quat of maximum cationic content, i.e., 64.9%. The instrumental analysis, viz. FT-IR, 1 H NMR, 13 C NMR verified the esterification and subsequent quaternization of the obtained esteramide quat. Furthermore, the surface-active and performance properties of synthesized esteramide quat were also evaluated.


Sign in / Sign up

Export Citation Format

Share Document