scholarly journals Sugarcane Field Residue and Root Allelopathic Impact on Weed Seed Germination

2017 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Charles L. Webber III ◽  
Paul M. White Jr ◽  
Derek S. Landrum ◽  
Douglas J. Spaunhorst ◽  
Darcey G. Wayment ◽  
...  

Allelopathy, the chemical interaction between plants, may result in the inhibition of plant growth and development, which can include compounds released from a crop that adversely impact weed species. The objective of this research was to determine the allelopathic impact of sugarcane (Saccharum officinarum) field residue and root water extracts on seed germination of three weed species. Red morningglory (Ipomoea coccinea L.), redroot pigweed (Amaranthus retroflexus L.), and spiny amaranth (Amaranthus spinosus L.)] seeds were treated with five extract concentrations (0, 12.5, 25, 50, and 100 g/L) from either sugarcane field residue or sugarcane root extracts. The field residue and roots were from sugarcane variety ‘HoCP 96-540’ plant cane. Germination generally decreased with increasing sugarcane field residue extract concentrations in the three weed species tested. At the highest residue concentration (100 g/L), red morningglory, redroot pigweed, and spiny amaranth germination decreased by 29%, 17.5% and 80.5%, respectively. Germination generally decreased with increasing sugarcane root extract concentrations in red morningglory and redroot pigweed, but not with spiny amaranth. The highest root concentration (100 g/L) decreased red morningglory and redroot pigweed germination by 19.5% and 18.5%, respectively. This research provides the first bioassay demonstrating that sugarcane root extracts have allelopathic activity, and specifically in respect to red morningglory and redroot pigweed germination. Future research should investigate the allelopathic compounds present in the sugarcane field residue and roots, determine if the same allelopathic compounds are present and in similar concentrations among other sugarcane varieties, and further examine which weed species may be susceptible to the allelopathic compounds present in sugarcane roots.

2018 ◽  
Vol 10 (2) ◽  
pp. 15
Author(s):  
Charles L. Webber III ◽  
Paul M. White Jr ◽  
Douglas J. Spaunhorst ◽  
Darcey G. Wayment ◽  
Derek S. Landrum

Allelopathy, the chemical interaction between plants, may result in the inhibition of plant growth and development, and includes compounds released from a primary crop that adversely impact crop or weed species. The objective of this research was to observe the allelopathic impact of sugarcane (Saccharum sp.) post-harvest crop residue and mill bagasse leachate on seed germination of three other plant species. Oat (Avena sative L.) var. ‘Corral’, tall morningglory (Ipomoea purpurea L. Roth), and redroot pigweed (Amaranthus retroflexus L.) seeds were treated with 5 leachate concentrations (0, 12.5, 25, 50, and 100 g/L) from either sugarcane crop residue or sugarcane bagasse. Each experiment was repeated twice (Experiment 1 & 2) with each plant species, leachate concentrations, and leachate source (sugarcane crop residue and mill bagasse). The impact of leachates from sugarcane variety ‘HoCP 96-540’ crop residue and sugarcane bagasse differed by the species evaluated (oat, morningglory, and redroot pigweed), the leachate source (crop residue vs. bagasse), and leachate concentration (0 to 100 g/L). Oat germination was not affected leachate source or concentration. Germination for both weed species, tall morningglory and redroot pigweed, were adversely affected by leachate source and concentration. In both cases, the sugarcane crop residue leachate had a greater deleterious impact on germination than did the bagasse leachate. The response to the leachates was more consistent and severe for tall morningglory germination than redroot pigweed germination. Averaged across experiments, the 12.5 g/L crop residue concentration decreased the tall morningglory germination to 17% compared to 34% germination for the bagasse leachate, and the 100 g/L residue concentration reduce germination to 6% compared to 19% for bagasse 100 g/L bagasse concentration. The 100 g/L concentration of crop residue reduced redroot pigweed germination by 13% (Experiment 1) and 27% (Experiment 2), while the bagasse leachate reduced germination by 5% (Experiment 1) and 15% (Experiment 2). Future research should investigate the allelopathic compounds present in the sugarcane crop residue and bagasse, determine if the same allelopathic compounds are present and in the same concentration among other sugarcane varieties, and further examine which weed and crop species may be vulnerable to the allelopathic compounds present in sugarcane crop residue and bagasse.


2017 ◽  
Vol 9 (11) ◽  
pp. 10 ◽  
Author(s):  
Charles L. Webber III ◽  
Paul M. White Jr ◽  
Derek S. Landrum ◽  
Douglas J. Spaunhorst ◽  
Darcey G. Wayment

The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the allelopathic impact of sugarcane (Saccharum officinarum) var. ‘HoCP 96-540’ field residue and sugarcane bagasse extracts on the germination of three vegetable crops. Tomato (Solanum lycopersicum L.), Chinese kale (Brassica oleracea L. var. alboglabra Bailey), and cucumber (Cucumis sativus L.) seeds were treated with 4 extract concentrations (0, 16.7, 33.3, and 66.7 g/L) from either sugarcane field residue or sugarcane bagasse extracts. Germination of the tomato, Chinese kale, and cucumber seeds decreased as concentration of sugarcane field residue extracts increased. At the highest residue concentration (66.7 g/L), germination decreased by 44%, 82%, and 88% for tomato, Chinese kale, and cucumber, respectively. These results would indicate that sugarcane field residue would not be a suitable natural mulch or soil amendment for local vegetable production, especially where the vegetables were direct-seeded. If evaluated correctly, the sugarcane field residue may be an effective natural mulch for perennial ornamental plants in landscape applications, serving as a physical and chemical barrier to germinating and emerging weed species. Sugarcane bagasse extracts did not inhibit Chinese kale and cucumber germination, and only inhibited tomato germination by 13% at the greatest concentration (66.7 g/L) in 1 experiment. As the first documented bioassay implicating bagasse as allelopathic active, further research should investigate the subject using higher concentrations, and additional sugarcane and tomato varieties. Except for the one instance with tomato germination, it appears that sugarcane bagasse has potential as a natural mulch for vegetable production, although the mulch would only be a physical barrier to weed establishment and not a allelopathic chemical barrier. Future research should determine the allelopathic active compounds in sugarcane field residue and if the concentration of allelopathic chemicals vary by sugarcane variety.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 510-514 ◽  
Author(s):  
G. H. Egley

The effects of ethylene upon germination of common cocklebur (Xanthium pensylvanicumWallr.) and redroot pigweed (Amaranthus retroflexusL.) seeds were studied. In laboratory tests with seeds in sealed flasks in the dark, 10 μl/L ethylene increased germination of redroot pigweed seeds from 7% to 52% at 30 C, and increased germination of large and small common cocklebur seeds from 30% and 0% to 100% and 90% respectively, at 25 C. At least 12 h of exposure to ethylene was necessary for appreciable stimulation of germination. In growth chamber studies with known numbers of seeds in pots of soil, ethylene at 11 kg/ha was injected into the soil, and the pots were enclosed in plastic bags for 24 h. One such injection at 2 weeks after planting, and successive injections at 2, 3, and 4 weeks, significantly increased redroot pigweed seedling emergence, and significantly decreased the numbers of dormant, viable seeds remaining in the soil. When pots were not enclosed, injections did not significantly effect redroot pigweed seeds, but significantly increased common cocklebur seedling emergence and decreased the number of viable common cocklebur seeds remaining in the soil.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Buchanan ◽  
J. E. Street ◽  
R. H. Crowley

Influence of time of planting and distance from the cotton row of pitted morningglory (Ipomoea lacunosaL.), prickly sida (Sida spinosaL.), and redroot pigweed (Amaranthus retroflexusL.) on yield of seed cotton (Gossypium hirsutumL. ‘Stoneville 213’) was determined on Decatur clay loam during 1975 through 1978. Weed growth was measured in 1977 and 1978. Seeds of the three weed species were planted 15, 30, or 45 cm from the cotton row at time of planting cotton or 4 weeks later. Weeds planted 4 weeks after planting cotton grew significantly less than did weeds planted at the same time as cotton. When planted with cotton, redroot pigweed produced over twice as much fresh weight as did prickly sida or pitted morningglory. The distance that weeds were planted from the cotton row did not affect weed growth in 1978, but did in 1977. The distance that weeds were planted from the cotton row did not affect their competitiveness in any year as measured by yield of cotton. However, in each year, yields of cotton were reduced to a greater extent by weeds planted with cotton than when planted 4 weeks later. In 3 of 4 yr, there were significant differences in competitiveness of each of the three weed species with cotton.


Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 42-44 ◽  
Author(s):  
D. Hawton ◽  
E. H. Stobbe

The selectivity of 2,4-dichlorophenylp-nitrophenyl ether (nitrofen) among rape (Brassica campestrisL., var. Echo) and two weed species, redroot pigweed (Amaranthus retroflexusL.) and green foxtail (Setaria viridis(L.) Beauv.), was determined quantitatively by a replicated dosage-response experiment. On an ED50basis, green foxtail and redroot pigweed were, respectively, 5.8 and 63.3 times more susceptible than rape. Selectivity was divided into three parameters; viz., differential spray retention, differential penetration, and differential effects within the plant. Differences in retention were measured with the use of a water-soluble dye, while differences in penetration were determined with14C-labelled nitrofen. Spray retention on green foxtail was 66% of that on the rape and 64% as much nitrofen penetrated redroot pigweed as penetrated rape. Under the conditions of these tests it was estimated that green foxtail and redroot pigweed were, respectively, 9 and 99 times more susceptible to nitrofen than was rape.


Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 648-654 ◽  
Author(s):  
David N. Duncan ◽  
William F. Meggitt ◽  
Donald Penner

Absorption, translocation, and metabolism of foliar-applied ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate] were studied to explain field observations showing differences in susceptibility among sugarbeet (Beta vulgarisL.), common ragweed (Ambrosia artemisiifoliaL.), redroot pigweed (Amaranthus retroflexusL.), and common lambsquarters (Chenopodium albumL.). In laboratory studies, two- to four-leaf seedlings of the highly susceptible species, redroot pigweed and common lambsquarter, absorbed greater amounts of14C-ethofumesate from foliar application than the moderately susceptible common ragweed and tolerant sugarbeet. Sugarbeet translocated very little14C from treated foliage to untreated plant tissue. All weed species translocated14C-ethofumesate to untreated leaf tissue when14C-ethofumesate was applied to seedlings at the two-leaf stage. Ethofumesate was translocated basipetally to the stem and root of two-leaf redroot pigweed and common lambsquarter seedlings. A high percentage of the14C was found in the water-soluble fraction in sugarbeet seedlings, indicating inactivation. The amount of metabolites recovered in the non-polar fraction depended on the stage of plant growth. Total photosynthesis and respiration in redroot pigweed was inhibited 4 h after foliar application and did not recover after 96 h. Uptake and evolution of CO2were also inhibited in sugarbeet leaves, but they recovered rapidly, depending on age of plant at treatment. The stage of plant development was the key factor determining species response to foliar treatments of ethofumesate in terms of absorption, metabolism, and total photosynthesis and respiration.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 669-672 ◽  
Author(s):  
Janet L. Shurtleff ◽  
Harold D. Coble

The influence of relative planting date on the growth of common cocklebur (Xanthium pensylvanicumWallr. ♯ XANST), common ragweed (Ambrosia artemesiifoliaL. ♯ AMBEL), sicklepod (Cassia obtusifoliaL. ♯ CASOB), and redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) grown in competition with soybean [Glycine max(L.) Merr. ‘Bragg’] was studied in the greenhouse. Increases in dry matter and height were slower for the five weed species than for soybean throughout the period of the study. The root: shoot ratio of soybean was the highest of any plant in the study, while common ragweed, common cocklebur, common lambsquarters, and sicklepod were intermediate, and redroot pigweed was the lowest. Soybean dry weight was always reduced when grown in competition with a weed. Soybean dry-matter production was reduced most when weeds were planted 2 weeks before soybean, especially with common cocklebur and common lambsquarters. Weed dry-matter content was severely reduced when the weed seed were planted simultaneously with or following soybean. Soybean height was usually reduced by competition with the weeds. The height of common ragweed was increased, however, when planted simultaneously with soybean. Common lambsquarters, redroot pigweed, and common ragweed heights were increased when planted 2 weeks prior to soybean.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 869-875 ◽  
Author(s):  
Peiguo Guo ◽  
Kassim Al-Khatib

Experiments were conducted to determine the effects of temperature on seed germination and growth of redroot pigweed, Palmer amaranth, and common waterhemp. At 15/10 C day and night temperature, respectively, no seed germination was observed in any species. Seed germination increased gradually as temperature increased. Germination peaked at 25/20 C in common waterhemp and at 35/30 C in redroot pigweed and Palmer amaranth. Seed germination of all three species declined when temperatures increased above 35/30 C. All three species produced less biomass at 15/10 C than at 25/20 C and 35/25 C. Redroot pigweed and common waterhemp biomass were similar at 15/10 C and higher than that of Palmer amaranth. However, Palmer amaranth produced more biomass than redroot pigweed and common waterhemp at 25/20 and 35/30 C. At 45/40 C, redroot pigweed, common waterhemp, and Palmer amaranth plants died 8, 9, and 25 d after initiation of heat treatment, respectively. The largest root volume among the three species was in Palmer amaranth grown at 35/30 C, whereas the smallest root volume was produced by Palmer amaranth grown at 15/10 C. Potential quantum efficiency (Fv/Fmax) of Palmer amaranth was higher than that of redroot pigweed and common waterhemp at higher temperature. The greater growth of Palmer amaranth at higher temperatures may be attributed in part to its extensive root growth and greater thermostability of its photosynthetic apparatus.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 728
Author(s):  
Sandra Weller ◽  
Singarayer Florentine ◽  
Muhammad Mansoor Javaid ◽  
Amali Welgama ◽  
Aakansha Chadha ◽  
...  

Amaranthus retroflexus L. (Amaranthaceae), Redroot pigweed, is native to North America, but has become a weed of agriculture worldwide. Previous research into competition with food crops found it significantly reduces yields. Additionally, taxonomy, biomass allocation, physiological responses to light intensity, water stress, elevated CO2, and herbicide resistance have been investigated. To extend other research findings, we investigated growth and biomass yield in response to (i) soil moisture stress, and (ii) drought and elevated CO2. Additionally, we investigated seed germination rates following exposure to three elevated temperatures for two different time periods. Overall, moisture stress reduced plant height, stem diameter, and number of leaves. Elevated CO2 (700 ppm) appeared to reduce negative impacts of drought on biomass productivity. Heating seeds at 120 °C and above for either 180 or 300 s significantly reduced germination rate. These results inform an understanding of potential responses of A. retroflexus to future climate change and will be used to predict future occurrence of this weed. The finding that exposing seeds to high temperatures retards germination suggests fire could be used to prevent seed germination from soil seed banks, particularly in no-till situations, and therefore may be used to address infestations or prevent further spread of this weed.


Sign in / Sign up

Export Citation Format

Share Document