scholarly journals Investigation on characterization of Ereen coal deposit

2016 ◽  
Vol 16 ◽  
pp. 18-21
Author(s):  
S. Jargalmaa ◽  
B. Purevsuren ◽  
Ya. Davaajav ◽  
B. Avid ◽  
B. Bat-Ulzii ◽  
...  

The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8) at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter).Mongolian Journal of Chemistry 16 (42), 2015, 18-21

Author(s):  
А Ариунаа ◽  
Г Цацрал ◽  
Р Эрдэнэчимэг ◽  
Б Пүрэвсүрэн ◽  
Ж Дугаржав

The chemical characteristics, pyrolysis and thermal dissolution of Bagnuur lignite coal,  which is located in the Central economic region of Mongolia were studied. The proximate, ultimate, petrographic and IR analysis results have been confirmed that the Baganuur coal is a low-rank B2 mark lignite coal. Analysis of ash composition of the sample shows Baganuur sample has lower contents of silicium, calcium, aluminum, ferric and zincium oxides. The results of pyrolysis of Baganuur coal at different heating temperatures show that a maximum yield 7.0% of liquid product can be obtained at 600°C. The results of thermal dissolution of Baganuur coal in tetralin with constant mass ratio between coal and tetralin (1:8) at 450°C show that 40% of liquid product can be obtained after thermal decomposition of the coal organic mass.


2014 ◽  
Vol 15 ◽  
pp. 66-72
Author(s):  
S Batbileg ◽  
B Purevsuren ◽  
Ya Davaajav ◽  
J Namkhainorov

On 21st January 2015, the abstract of this paper was replaced with the correct abstract.The coal of Khoot deposit have been investigated and determined the technical characteristics, elemental and petrographical maceral compositions. On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Khoot coal is a sub-bituminous coal. The hard residue after pyrolysis have been activated by heated water steam and determined the iodine and methylene blue adsorption of initial coal and activated carbon samples from pyrolysis hard residue. The porosity structure of initial coal, activated carbon of pyrolysis hard residue and hard residue after thermolysis (thermal dissolution) have been determined by SEM analysis. The liquid tar product of thermolysis of Khoot coal was investigated by FTIR, 13C and 1H NMR spectrometric analysis. The results of thermolysis of Khoot coal in tetralin with constant mass ratio between coal and tetralin (1:1.8) at 450°C show that 60.8% of liquid product can be obtained after thermolysis of the coal organic mass.DOI: http://doi.dx.org/10.5564/mjc.v15i0.326 Mongolian Journal of Chemistry 15 (41), 2014, p66-72


2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Jafar Ai ◽  
Mostafa Rezaei-Tavirani ◽  
Esmaeil Biazar ◽  
Saeed Heidari K ◽  
Rahim Jahandideh

Hydroxyapatite is a biocompatible ceramic and reinforcing material for bone implantations. In this study, Starch-chitosan hydrogel was produced using the oxidation of starch solution and subsequently cross-linked with chitosan via reductive alkylation method (weight ratio (starch/chitosan): 0.38). The hydroxyapatite micropowders and nanopowders synthesized by sol-gel method (10, 20, 30, 40 %W) were composited to hydrogels and were investigated by mechanical analysis. The results of SEM images and Zetasizer experiments for synthesized nanopowders showed an average size of 100 nm. The nanoparticles distributed as uniform in the chitosan-starch film. The tensile modulus increased for composites containing hydroxyapatite nano-(size particle: 100 nanometer) powders than composites containing micro-(size particle: 100 micrometer) powders. The swelling percentage decreased for samples containing hydroxyapatite nanopowder than the micropowders. These nanocomposites could be applied for hard-tissue engineering.


e-Polymers ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 491-499 ◽  
Author(s):  
Yuhui Zhou ◽  
Li He ◽  
Wei Gong

AbstractIn this study, polypropylene (PP) foams were prepared with 1.0 wt% of cucurbit[6]uril (Q[6]), zinc acetate (Zn(Ac)2), Zn@Q[6] (a supramolecular compound synthesized from Q[6] and Zn(Ac)2), or a mixture of Zn(Ac)2 and Q[6] (weight ratio of 1:1) through injection molding in the presence of a chemical blowing agent, azodicarbonamide. The effect of the additions on the crystallization behavior and foaming performance of PP and the mechanical characterizations of the foaming samples were determined. The results showed that the additions can change the crystallization type from homogeneous to heterogeneous, increase the crystallization rate and shrink the size but increase the density of spherulites. Among the additions, Q[6] most significantly altered the crystallization properties. Scanning electron microscopy (SEM) images revealed that the PP foaming performance can be improved by Zn(Ac)2 addition at a lower temperature (175°C); however, further increasing the temperature had an undesirable effect. Q[6] exhibited the optimum foaming improvement effect on PP in a wide temperature range (175–195°C). Adding nanoparticles also enhanced the tensile properties, flexural strength and impact strength of foaming PP at low temperatures. However, with increasing temperature, the poor cell structure demonstrated undesirable effects in terms of tensile strength, flexural strength and impact strength.


2018 ◽  
Vol 10 (10) ◽  
pp. 3587 ◽  
Author(s):  
Marek Więckowski ◽  
Natalia Howaniec ◽  
Eugene Postnikov ◽  
Mirosław Chorążewski ◽  
Adam Smoliński

This article presents the results of tests conducted on a measuring system for monitoring changes in the distribution of temperature in a coal deposit during the heating and cooling phases, and their correlation with the analysis of the concentration of gases. The tests were conducted on five samples of hard coal collected in deposits mined in Poland. Measurements of the changes in temperature and changes in gas concentration were conducted from the temperature of 35 to 300 °C, for the heating phase, and from 300 to 35 °C, for the cooling phase. The percentage share of coal of given temperatures was calculated. When comparing the percentage share for the same temperature in the hot spot, for the heating and cooling phase, significant differences in the distribution of the given percentages were observed. Changes in gas concentrations during heating and cooling were analyzed and the dynamics of changes in gas concentrations were determined for the coals tested. Changes in the values of fire hazard indices were analyzed. There were significant differences in the concentration of gases and the values of fire hazard indices between the heating and the cooling phase. The application of different criteria to assess coal during heating and cooling was proposed.


RSC Advances ◽  
2020 ◽  
Vol 10 (14) ◽  
pp. 8172-8180 ◽  
Author(s):  
Weixiang Qian ◽  
Xian Li ◽  
Xianqing Zhu ◽  
Zhenzhong Hu ◽  
Xu Zhang ◽  
...  

Activated carbon nanofibers for supercapacitor electrodes were prepared by the electrospinning method using degradative solvent extracts from low-rank coal and PAN.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


2015 ◽  
Vol 1131 ◽  
pp. 186-192 ◽  
Author(s):  
Voranuch Somsongkul ◽  
Surassawatee Jamikorn ◽  
Atchana Wongchaisuwat ◽  
San H. Thang ◽  
Marisa Arunchaiya

The composite polymer electrolyte consisting of poly (ethylene oxide) (PEO), KI, I2 and TiO2 was blended with low molecular weight poly (ethylene glycol) (PEG) and (PEG-MA)-Ru. The SEM images of these blended PEO electrolytes showed better dispersion of materials and the electrochemical impedance spectroscopic study showed an increase in conductivity compared to that of composite PEO electrolyte. These results were consistent with enhanced efficiency of DSSCs using these blended PEO electrolytes. The energy conversion efficiencies of DSSCs using composite PEO-PEG, PEO-(PEG-MA)-Ru and PEO-PEG-(PEG-MA)-Ru polymer blend electrolytes were 5.47, 5.05 and 5.28, respectively compared to 4.99 of DSSC using composite PEO electrolyte. The long-term storage of unsealed DSSCs at room temperature for 93 days demonstrated that the cell efficiency gradually decreased to 0.49-1.88%. DSSCs assembled with composite polymer blend electrolyte showed a slower decrease than that of DSSC using composite PEO electrolyte. It was found that the composite PEO-PEG-(PEG-MA)-Ru polymer blend electrolyte of 1.0:0.1:0.1 weight ratio gave the best improvement in stability of DSSCs.


Sign in / Sign up

Export Citation Format

Share Document