scholarly journals Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications

2020 ◽  
Vol 10 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Katarina Nešović ◽  
Ana Janković ◽  
Tamara Radetić ◽  
Aleksandra Perić-Grujić ◽  
Maja Vukašinović-Sekulić ◽  
...  

Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bac­terial resistance. In this work, we aim to produce novel silver/poly(vinyl alco­hol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electro­chemi­cal AgNPs syn­thesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The forma­tion of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmis­sion electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 °C to mimic physiological conditions. Release profiles indicated “burst release” behavior, which is beneficial for wound dressing applications. The antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli strains using disc-diffusion test, and non-toxicity of hydrogels was proved by dye-exclusion test. The obtained results confirmed strong potential of Ag/PVA/CHI hydrogels for biomedical applications.

2010 ◽  
Vol 64 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Dragana Pepic ◽  
Darinka Andjelkovic ◽  
Marija Nikolic ◽  
Svetlana Grujic ◽  
Jasna Djonlagic

Poly (?-caprolactone), PCL, is an aliphatic polyester suitable for controlled drug release due to its biodegradability, biocompatibility, non-toxicity and high permeability to many therapeutic drugs. This study investigates the effect of the preparation parameters on the size and the morphology of the PCL microspheres and on the release profile of carbamazepine from these microspheres. The PCL microspheres were prepared using oil-in-water (o/w) emulsion solvent evaporation method with the poly(vinyl alcohol), PVA, as the emulsion stabilizer. The influence of the stirring rate applied during the emulsion formation, the homogenization time and the emulsifier concentration on diameter and size distribution of the microspheres was analyzed by scanning electron microscope (SEM). The initial emulsion was formed applying high stirring rates of 10000, 18000 and 23000 rpm, for homogenization times: 5, 10 and 15 min. The diameter was strongly influenced by the stirring rate, and the average particle size decreased from 9.2 to 2.8 ?m with the increase of the stirring rate. Increasing the amount of PVA in the water phase from 0.2 to 1 mass% improved stabilization of the oil droplets and led to a slight decrease of the average particle diameter. Drug-loaded microspheres were prepared by the same technique using different amounts of carbamazepine (10 and 15 mass%), under given conditions (1 mass% PVA, stirring rate of 18000 rpm for a period of 5 min of emulsion formation). Additionally, microspheres were prepared by applying low stirring rate of 1000 rpm with 10 and 15 mass% of the drug. The SEM analysis showed that microspheres created with 18000 rpm stirring rate, had average diameters of 3-4 ?m, and the microspheres prepared with 1000 rpm stirring rate were larger than 100 ?m. It was also observed that, in the case of the large microspheres, carbamazepine was deposited on their surfaces, while the small microspheres had smooth surfaces without observable drug crystals. The encapsulation efficiency and the release behavior of the carbamazepine were examined using high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). The drug encapsulation efficiencies were in the range from 69 to 81%, and were increasing with the increase of the amount of carbamazepine in both series. In vitro release experiments were carried out in the phosphate buffer solution (pH 7) at 37?C. The release rate was influenced by the microspheres size and morphology. The larger microspheres released more carbamazepine (85-95%) compared to the small ones (50-65%) for the same period. This behavior was attributed to the different drug distribution in the PCL matrix. Different mathematical models were used to describe drug release kinetics. It was concluded that the mechanism of the carbamazepine release from the microspheres was diffusion-controlled, independent on the type of microspheres. The kinetic parameters showed that the release of carbamazepine was slower from the smaller microspheres, probably as a result of more even distribution of the drug in the polymer matrix.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
John Jackson ◽  
Helen Burt ◽  
Dirk Lange ◽  
In Whang ◽  
Robin Evans ◽  
...  

The prompt treatment of burn wounds is essential but can be challenging in remote parts of Africa, where burns from open fires are a constant hazard for children and suitable medical care may be far away. Consequently, there is an unmet need for an economical burn wound dressing with a sustained antimicrobial activity that might be manufactured locally at low cost. This study describes and characterizes the novel preparation of a silver nitrate-loaded/poly(vinyl alcohol) (PVA) film. Using controlled heating cycles, films may be crosslinked with in situ silver nanoparticle production using only a low heat oven and little technical expertise. Our research demonstrated that heat-curing of PVA/silver nitrate films converted the silver to nanoparticles. These films swelled in water to form a robust, wound-compatible hydrogel which exhibited controlled release of the antibacterial silver nanoparticles. An optimal formulation was obtained using 5% (w/w) silver nitrate in PVA membrane films that had been heated at 140 °C for 90 min. Physical and chemical characterization of such films was complemented by in vitro studies that confirmed the effective antibacterial activity of the released silver nanoparticles against both gram positive and negative bacteria. Overall, these findings provide economical and simple methods to manufacture stable, hydrogel forming wound dressings that release antibiotic silver over prolonged periods suitable for emergency use in remote locations.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunxue Zhang ◽  
Xiaoyan Yuan ◽  
Lili Wu ◽  
Jing Sheng

AbstractSubmicron poly(vinyl alcohol) (PVA) fibre mats embedded with Aspirin and bovine serum albumin (BSA) were prepared by electrospinning of their aqueous solutions. Fibre morphology was investigated by scanning electron microscopy. The composition of the fibre mats was characterized by Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy. The in vitro drug release was investigated by immersing the fibre mats in phosphate buffer solution at 37°C. Results indicated that the morphology of fibre mats was influenced by the amount of drug, and more beaded and irregularly shaped fibres were found with increasing drug amounts. There were drug molecules distributed on the surface of the PVA fibres. Studies of in vitro drug release showed that both Aspirin and BSA were released more quickly from PVA fibre mats than from PVA films because of the large surface area and high porosity of the fibre mats.


2010 ◽  
Vol 76 ◽  
pp. 90-99
Author(s):  
Chikara Ohtsuki ◽  
Yuji Ichikawa ◽  
Hiroyuki Shibata ◽  
Tsukasa Torimoto ◽  
Ill Yong Kim

The sensing of protein adsorption by silver nanoparticles/hydroxyapatite composites was investigated using a phosphate buffer solution containing bovine serum albumin (BSA) or lysozyme (LSZ). The adsorption of BSA and LSZ on the composites prepared without using trisodium citrate was similar to plain hydroxyapatite, whereas composites prepared with trisodium citrate showed lower BSA adsorption and higher LSZ adsorption than plain hydroxyapatite powder. Because the ability of the adsorption is mainly governed by surface charges of the powders, the usage of trisodium citrate during the preparation is assumed to produce high negative charges on the surface. The protein adsorption resulted in peak shifts in localized surface plasmon resonance (LSPR) spectra. The peak shifts clearly corresponded to the concentration of the surrounding proteins up to the point of saturation of adsorption on the hydroxyapatite. The silver nanoparticles/hydroxyapatite composites are promising candidate materials for detection of protein adsorption by measurement of LSPR peak shifts, that may be attributed to changes in the dielectric properties of the matrix fluid surrounding the silver nanoparticles.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 66024-66036 ◽  
Author(s):  
Zahra Abdali ◽  
Hamid Yeganeh ◽  
Atefeh Solouk ◽  
Reza Gharibi ◽  
Marziyeh Sorayya

Thermoresponsive and antimicrobial wound dressing via thiol-ene polymerization reaction.


Author(s):  
Jan Miroslav Hartinger ◽  
Peter Lukáč ◽  
Petr Mitáš ◽  
Mikuláš Mlček ◽  
Michaela Popková ◽  
...  

The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in a phosphate buffer solution. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of the vancomycin revealed the homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following i. p. administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pimpon Uttayarat ◽  
Jarurattana Eamsiri ◽  
Theeranan Tangthong ◽  
Phiriyatorn Suwanmala

Radiolytic synthesis provides a convenient and environmentally-friendly approach to prepare metallic nanoparticles in large scale with narrow size distribution. In this report, colloidal silver nanoparticles (AgNPs) were synthesized by gamma radiation using poly(vinyl alcohol) (PVA) or silk fibroin (SF) as stabilizers and were evaluated for their antibacterial properties. The conversion of metallic silver ions to silver atoms depended on irradiation dose and stabilizer concentration as determined by UV-Vis spectrophotometry and transmission electron microscopy. The uniformly dispersed AgNPs with diameter 32.3 ± 4.40 nm were evaluated as antiseptic agents in films composed of chitosan, SF, and PVA that were processed by irradiation-induced crosslinking. Using disc diffusion assay, the films containing 432 ppm AgNPs could effectively inhibit the growth of bothStaphylococcus aureusandPseudomonas aeruginosa. Therefore, we have demonstrated in our present study that gamma radiation technique can potentially be applied in the mass production of antibacterial wound dressings.


2015 ◽  
Vol 645-646 ◽  
pp. 1374-1382 ◽  
Author(s):  
Rui Hua Zhang ◽  
Li Qin Li ◽  
Chen Wang ◽  
Xiao Jing Lu ◽  
Tong Shi ◽  
...  

Huperzine A (HupA), an alkaloid isolated from theChinese club moss, is a reversible inhibitor of cholinesterases which cross the blood-brain barrier and show high specificity for acetylcholinesterase (AChE). However, HupA induces unwanted side effects in an effective dose against nerve agent poisoning. In the present study, HupA–loaded poly (lactide-co-glycolide) nanoparticles (HupA-PLGA-NP) were prepared using the O/W emulsion solvent evaporation method. The results of SEM demonstrated that HupA-PLGA-NP had an spherical shape and a smooth surface without pores. It’s mean diameter and PDI were 208.5±3.6nm and 0.09±0.01 respectively. The Zeta potential was-35.3±1.8mV and the drug loading was 2.86±0.6%.In vitrodrug release studies showed that HupA-PLGA-NP had a sustained-release behavior in phosphate buffer solution, The accumulated amount of HupA was about 72.1% at 48h with a low burst release within 30min. The LD50values of HupA and HupA-PLGA-NP were 1.40 and 4.85mg/kg respectively, showing that the toxicity of HupA was reduced by 3.5 times. We evaluated the protective efficacy for different doses of HupA or HupA-PLGA-NP against 1.0×LD95(143.0μg/kg) soman toxicity. The results confirmed that HupA (0.3~0.5mg/kg) or HupA-PLGA-NP (0.5~1.5mg/kg) could ensure animals survive. However, about 10% of the animals injected with HupA (0.8mg/kg) died, while no animals died when injected with HupA-PLGA-NP (1.5mg/kg). Aim to 100% survival rate, the effective protective time (12h) of HupA-PLGA-NP (0.5mg/kg,iv) against 1.0×LD95soman toxicity in mice was significantly prolonged compared with that of HupA (4h). The study of AChE activity showed that whole-blood and supernatant of brain diluted by 80-fold and 10-fold respectively were optimum in this study. AChE inhibition after administration of HupA and HupA-PLGA-NP (0.5mg/kg,iv) was recorded and analyzed, The peak values of AChE inhibition in whole-blood and brain by HupA-PLGA-NP (17.6% and 21.8%) were lower than those by HupA (33.7% and 31.9%) and AChE inhibition time by HupA-PLGA-NP was longer than that by HupA. These data confirmed that HupA-PLGA-NP had less toxic and more longer time than HupA against 1.0×LD95soman poisoning and warrant further development as a potent medical countermeasure against chemical warfare nerve agents (CWNAs) poisoning.


2021 ◽  
Author(s):  
Luong Ngoc Diem ◽  
Indranil Banerjee ◽  
Kunal Pal ◽  
Udomlak Sukatta ◽  
Prapassorn Rugthaworn ◽  
...  

Abstract Biomaterial-based wound dressings were fabricated using cellulose nanocrystals (CNCs) as nano-filler in a polymeric mixture of poly(vinyl alcohol) (PVA) and gum tragacanth (GT) via solution casting. Physical and chemical characteristics of neat PVA, PVA/GT and PVA/GT/CNC films with varying concentrations (2 to 10%) of CNCs were observed. Initial analysis of CNCs showed nanosized particles of 104 nm length and 7 nm width. Scanning electron microscopy (SEM) illustrated cluster formations of CNCs in the polymer matrix. Fourier transform infrared (FTIR) spectrometry was used to confirm the chemical functional groups in the material. The presence of GT and CNCs in the polymer matrix improved water uptake and prolonged stability for 7 days. The CNCs enhanced tensile strength from 54.63 MPa to 80.39MPa. Biological properties of PVA/GT/CNC films were analyzed. Results showed that the dressing material was nontoxic to mouse fibroblast cells L929, while film loaded with betel leaf extract exhibited excellent antibacterial activities against Staphylococcus aureus DMST 8840 and Pseudomonas aeruginosa TISTR 781, indicating that composite film was suitable for application in wound dressing.


Sign in / Sign up

Export Citation Format

Share Document