scholarly journals Fabrication of Electrical Conductivity and Reinforced Electrospun Silk Nanofibers with MWNTs

2017 ◽  
Vol 25 (0) ◽  
pp. 40-44 ◽  
Author(s):  
Liuyang Zuo ◽  
Feng Zhang ◽  
Bing Gao ◽  
Baoqi Zuo

Electrospinning is an effective technique for fabricating submicron to nanoscale fibers from synthetic polymer as well as natural proteins. In this study, multiwalled carbon nanotubes (MWNTs) were embedded via electrospinning by adding MWNTs into the spinning dope, and found to be well aligned along the fiber axis in the silk fibroin nanofibers. The morphology and microstructure of the electrospun nanofibers were characterised using a field emission scanning electron microscope (FESEM) and Transmission electron microscopy (TEM). X-ray diffraction (XRD) and TG-DTA were used to study the crystal structure of the silk/MWNTs composite nanofibres, carried out to alter the strength, toughness and electrical conductivity of silk nanofibers by adding a small amount of MWNTs. The electrospun random silk mats with 1% MWNTs had a Young’s modulus, ultimate tensile strength and strain of 107.46 ± 9.15MPa, 9.94 ± 1.2MPa and 9.25 ± 1.5%, respectively, and electrical conductivity increased to 1.2×10-4S/cm. The silk/MWNTs composite nanofibres could potentially be applied in nerve repair materials owing to their excellent mechanical properties and electrical conductivity.

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Solomon O. Giwa ◽  
Mohsen Sharifpur ◽  
Mohammad H. Ahmadi ◽  
S. M. Sohel Murshed ◽  
Josua P. Meyer

The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe2O3 (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe2O3/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe2O3/water, which was good for engineering applications as the pumping power would be reduced.


2018 ◽  
Vol 42 (19) ◽  
pp. 16307-16328 ◽  
Author(s):  
Mohammad Hassan Omidi ◽  
Mohammad Hossein Ahmadi Azqhandi ◽  
Bahram Ghalami-Choobar

In this study, branched polyethylenimine (PEI) loaded on magnetic multiwalled carbon nanotubes (MWCNT/CoFe2O4) was synthesized and characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and Fourier transform infrared spectroscopy (FTIR).


2014 ◽  
Vol 07 (06) ◽  
pp. 1440001 ◽  
Author(s):  
Michał Świętosławski ◽  
Marcin Molenda ◽  
Piotr Natkański ◽  
Piotr Kuśtrowski ◽  
Roman Dziembaj ◽  
...  

Polyanionic cathode materials for lithium-ion batteries start to be considered as potential alternative for layered oxide materials. Among them, Li 2 CoSiO 4, characterized by outstanding capacity and working voltage, seems to be an interesting substitute for LiFePO 4 and related systems. In this work, structural and electrical investigations of Li 2 CoSiO 4 obtained by sol–gel synthesis were presented. Thermal decomposition of gel precursor was studied using EGA (FTIR)-TGA method. Chemical composition of the obtained material was confirmed using X-ray diffraction and energy-dispersive X-ray spectroscopy. The morphology of β- Li 2 CoSiO 4 was studied using transmission electron microscopy. High temperature electrical conductivity of Li 2 CoSiO 4 was measured for the first time. Activation energies of the electrical conductivity of two Li 2 CoSiO 4 polymorphs (β and γ) were determined. The room temperature electrical conductivity of those materials was estimated as well.


2011 ◽  
Vol 175-176 ◽  
pp. 341-344 ◽  
Author(s):  
Byoung Suhk Kim ◽  
Kyu Oh Kim ◽  
Ick Soo Kim

We report the electrospun poly(L-lactide) (PLA) nanofibers incorporating polyhedral oligosilsesquioxane (POSS)-modified multiwalled carbon nanotubes (MWNTs). FT-IR, transmission electron microscopy (TEM) and Raman analysis confirmed the existence of POSS macromers bonded to the MWNTs as an extra phase. The thermal and microstructure properties of the PLA hybrid nanofibers with POSS-modified MWNTs were investigated by thermogravimetric analysis (TGA) and Wide-angle X-ray diffraction (WAXD).


2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


2020 ◽  
pp. 096739112093524
Author(s):  
Anupama Mogha ◽  
Anupama Kaushik

This research presents an analysis of castor oil-based polymer nanocomposites that can be used for numerous commercial applications. Due to the versatile chemical structure of castor oil, it can replace the petrochemical products and hence can be optimized as nontoxic bioresource for the production of nanocomposites with the incorporation of nanofillers in small quantities. It can be directly used as polyol resource without any chemical alteration for synthesis of polyurethane (PU) nanocomposites. The prepared PU nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction, transmission electron microscopy (TEM), and mechanical properties. The compositional and structural studies indicate the formation of PU linkages and well dispersion of clay and multiwalled carbon nanotubes between the polymer–nanofiller phase, as shown by the morphological analysis using TEM. Also, there is an increase in the tensile strength and Young’s modulus values with the increase in the filler content.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
Nguyen Hoang Viet ◽  
Nguyen Thi Hoang Oanh

In this study, ex-situ Cu-TiC nanocomposites of 1, 3 and 5 vol. % TiC and in-situ Cu-TiH2-C nanocomposites (corresponding to 5 vol. % TiC) were prepared using ball milling and spark plasma sintering methods. Powder mixtures were milled for 4 h at 400 rpm. As-milled Cu-TiC composite powders were consolidated under an applied pressure of 70 MPa. The phase composition, and microstructure of the composite samples were characterized by X-ray diffraction, and scanning electron microscope and transmission electron microscope techniques, respectively. With the increasing TiC content from 1 to 5 vol. %, the hardness of the ex-situ composites when sintered at 600 °C changed between 161.4 and 178.5 HV and the electrical conductivity decreased from 52.1 to 47.6% IACS. In-situ Cu-TiH2-C nanocomposite sintered at 950 °C had higher hardness and electrical conductivity than ex-situ Cu-TiC composite due to having a homogenous distribution of nano reinforcement particles and dense structure.


2014 ◽  
Vol 783-786 ◽  
pp. 1542-1547
Author(s):  
Anway Maiti ◽  
Ram S. Maurya ◽  
Tapas Laha

Multiwalled carbon nanotube (MWCNT) reinforced Al-Si (11 wt%) alloy based nanocomposites were synthesized by spark plasma sintering using high energy ball milled nanocrystalline Al-Si powders mixed with physically functionalized MWCNTs. Improvement in MWCNT dispersion and associated improvement in densification of the nanocomposites were confirmed. The microhardness and elastic modulus of the nanocomposites measured by nanoindentation exhibited appreciable improvement. Grain size measurement by X ray diffraction and transmission electron microscopy confirmed achievement of nanocrystalline grains in Al-Si powder after ball milling, as well as in the consolidated nanocomposites. TEM analysis was performed to reveal the dislocation activity, effect of presence of primary Si and distribution of MWCNTs in the nanocomposites.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Cheng-Fu Yang ◽  
Wei-Chieh Hsu ◽  
Song-Mao Wu ◽  
Chean-Cheng Su

The new class of multiwalled carbon nanotube (MWCNT)/titania nanocomposites was prepared using a sol-gel technique. The addition of titania to MWCNTs has the potential to provide new capability for the development of electrical devices by taking advantage of the favorable electric characteristics of MWCNTs. MWCNTs were first functionalized with carboxyl, acyl chloride, amine, and hydroxyl groups and were then dispersed in a tetraisopropyl titanate (TIPT) solution via ultrasonic processing. After gelation, well-dispersed titania in the MWCNT/titania nanocomposites was obtained. Functionalized MWCNTs with varied functional groups were proved by Fourier transform infrared spectroscopy (FT-IR). For the nanocomposites, the degree of the sol-gel process were proved by Raman spectroscopy and wide-angle X-ray diffraction (WAXD). Furthermore, the morphology of the MWCNT/titania nanocomposites was observed using transmission electron microscopy (TEM). In the sol-gel process, the functionalized MWCNTs with carboxyl, acyl chloride, amine, and hydroxyl groups have resulted in the carbon nanotube-graft-titania nanocomposites with a network structure of titania between the carbon nanotubes.


2007 ◽  
Vol 1023 ◽  
Author(s):  
Ruofeng Wang ◽  
Edward T. Bender ◽  
Mohannad T. Aljarrah ◽  
Edward A. Evans ◽  
Rex D. Ramsier

AbstractErbium(III) doped TiO2 nanofibers (Er2Ti2O7) have been synthesized by electrospinning mixtures of polymers, metal-containing materials, and erbium acetate. These electrospun nanofibers were subsequently annealed at temperatures of 550, 750, 950, and 1150 oC to remove the organics and leave behind the metal oxides. The crystal structure and optical properties of the nanofiber pyrochlores were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transformation IR (FTIR) spectroscopy. Different crystal structures were formed by controlling the annealing conditions. XRD data are compared with near-IR spectra to better understand the effects of annealing temperature on the Er (III) thermally-excited selective optical emission process.


Sign in / Sign up

Export Citation Format

Share Document