scholarly journals Emu Oil Reduces LPS-Induced Production of Nitric Oxide and TNF-α but not Phagocytosis in RAW 264 Macrophages

2018 ◽  
Vol 67 (4) ◽  
pp. 471-477 ◽  
Author(s):  
Tadayoshi Miyashita ◽  
Kazuhiro Minami ◽  
Minoru Ito ◽  
Ryosuke Koizumi ◽  
Yoshimasa Sagane ◽  
...  
Keyword(s):  
Emu Oil ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 247-258 ◽  
Author(s):  
Mahsa Hatami ◽  
Mina Abdolahi ◽  
Neda Soveyd ◽  
Mahmoud Djalali ◽  
Mansoureh Togha ◽  
...  

Objective: Neuroinflammatory disease is a general term used to denote the progressive loss of neuronal function or structure. Many neuroinflammatory diseases, including Alzheimer’s, Parkinson’s, and multiple sclerosis (MS), occur due to neuroinflammation. Neuroinflammation increases nuclear factor-κB (NF-κB) levels, cyclooxygenase-2 enzymes and inducible nitric oxide synthase, resulting in the release of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). It could also lead to cellular deterioration and symptoms of neuroinflammatory diseases. Recent studies have suggested that curcumin (the active ingredient in turmeric) could alleviate the process of neuroinflammatory disease. Thus, the present mini-review was conducted to summarize studies regarding cellular and molecular targets of curcumin relevant to neuroinflammatory disorders. Methods: A literature search strategy was conducted for all English-language literature. Studies that assessed the various properties of curcuminoids in respect of neuroinflammatory disorders were included in this review. Results: The studies have suggested that curcuminoids have significant anti- neuroinflammatory, antioxidant and neuroprotective properties that could attenuate the development and symptom of neuroinflammatory disorders. Curcumin can alleviate neurodegeneration and neuroinflammation through multiple mechanisms, by reducing inflammatory mediators (such as TNF-α, IL-1β, nitric oxide and NF-κB gene expression), and affect mitochondrial dynamics and even epigenetic changes. Conclusion: It is a promising subject of study in the prevention and management of the neuroinflammatory disease. However, controlled, randomized clinical trials are needed to fully evaluate its clinical potential.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Author(s):  
Mohamed A. Salama ◽  
Mohamed A. Younis ◽  
Roba M. Talaat

AbstractObjectiveThe present study aimed to evaluate cytotoxic, apoptotic, and anti-inflammatory properties of bee venom (BV) as well as changes in cytokine secretion levels and nitric oxide (NO) production using three different cancer cell lines [liver (Hep-G2), breast (MCF-7), and cervical (HPV-18 infected HeLa cells)] and two normal cells (splenocytes and macrophages (MQ).MethodsCytotoxic activity of BV against tumor cell lines and normal splenocytes/MQ was tested by MTT assay. By ELISA (ELISA); Tumor necrosis factor (TNF-α), Interleukine (IL-10) and interferon (IFN-γ) were measured. Caspase three expressions was evaluated using reverse transcription-polymerase chain reaction (RT-PCR). Nitric oxide (NO) was estimated using a colorimetric assay.ResultsBV has a significant cytotoxic effect on all cell lines in a dose- and time-dependent manner; none of them was toxic for normal cells. Treating Hep-G2 cells with BV showed a reduction in IL-10, elevation in TNF-α with no change in IFN-γ level. MCF-7 cells have low IL-10 and TNF-α and high IFN-γ production level. Elevation of IL-10 and IFN-γ coincides with a reduction in TNF-α level was demonstrated in HeLa cells. The expression of Caspase three was dramatically increased with elevation in BV concentration in all tested cancer cell lines. A gradual decrease in NO production by MQ with increasing BV dose was observed.ConclusionTaken together, our results stressed on the importance of BV as a potent anti-tumor agent against various types of cancers (Liver, Breast, and Cervix). Further steps towards the use of BV for pharmacological purposes must be done.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


2011 ◽  
Vol 60 (1-2) ◽  
pp. 77-88 ◽  
Author(s):  
Julia Reis ◽  
Xiu Qin Guan ◽  
Alexei F. Kisselev ◽  
Christopher J. Papasian ◽  
Asaf A. Qureshi ◽  
...  

1996 ◽  
Vol 170 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Hong Jiang ◽  
John A. Rummage ◽  
Charles A. Stewart ◽  
Mary J. Herriott ◽  
Irina Kolosova ◽  
...  

1999 ◽  
Vol 8 (6) ◽  
pp. 295-303 ◽  
Author(s):  
Peter Dieter ◽  
Ute Hempel ◽  
Sabine Kamionka ◽  
Angelika Kolada ◽  
Birgit Malessa ◽  
...  

LPS and MTP-PE (liposome-encapsulatedN-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-:[1',2'-dipalmitoyl-sni-glycero-3-(hydroxy-phosphoryl-oxyl)] etylamide) induce in liver macrophages a synthesis and release of TNF-α, nitric oxide and prostanoids. Both agents induce an expression of mRNA's encoding TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and of corresponding proteins. LPS and MTP-PE induce a rapid activation of the extracellular regulated kinase (ERK) isoenzymes-1 and -2. Inhibition of map kinase isoenzymes leads to a decreased release of TNF-α, nitric oxide and prostaglandin (PG) E2after both agents. The transcription factors NF-κB and AP-1 are strongly activated by LPS within 30 minutes. MTP-PE induces a weak activation of both transcription factors only after 5 hours. Inhibition of NF-κB inhibits the LPS- but not the MTP-PE-induced release of TNF-α, nitric oxide and PGE2. PGE2release after LPS is higher than after MTP-PE. Exogenously added PGE2inhibits the activation of map kinase and TNF-α release by LPS, but not by MTP-PE. Release of nitric oxide after LPS and MTP-PE is enhanced after prior addition of PGE2. PGD2is without any effect. MTP-PE, but not LPS, induces a cytotoxicity of Kupffer cells against P815 tumor target cells. The MTP-PE-induced cytotoxicity is reduced by TNF-α neutralizing antibodies, indicating the involvement of TNF-α. Thus our results suggest that the different potencies of LPS and MTP-PE as immunomodulators probably result from different actions on Kupffer cells, resulting in differences in the amounts and kinetics of released TNF-α and PGE2, and that PGE2plays an important regulatory role in the action of LPS, but not in the actions of MTP-PE.


2003 ◽  
Vol 26 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Seong-Soo Choi ◽  
Jin-Koo Lee ◽  
Eun-Jung Han ◽  
Ki-Jung Han ◽  
Han-Kyu Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document