scholarly journals Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

Author(s):  
Beom Seok Park ◽  
Jaewang Lee ◽  
Jin Hyun Jun

Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

2002 ◽  
Vol 80 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Chandan Chakraborty ◽  
Louise M Gleeson ◽  
Timothy McKinnon ◽  
Peeyush K Lala

The human placenta is an invasive structure in which highly proliferative, migratory, and invasive extravillous trophoblast (EVT) cells migrate and invade the uterus and its vasculature. Using in vitro propagated normal first-trimester EVT cells and immortalized EVT cells, which share all of the phenotypic and functional characteristics of the normal EVT cells, it has been shown that migration/invasion of human EVT cells is stringently regulated by many growth factors, their binding proteins, extracellular matrix (ECM) components, and some adhesion molecules in an autocrine/paracrine manner at the fetal–maternal interface in human pregnancy. Transforming growth factor β (TGF-β), decorin (a proteoglycan in the ECM), and melanoma cell adhesion molecule (Mel-CAM) inhibit, and insulin-like growth factor II (IGF-II), IGF-binding protein 1 (IGFBP-1), and endothelin 1 (ET-1) stimulate EVT cell migration/invasion. Inhibition of EVT cell migration by TGF-β has been suggested to be due to upregulation of integrins, which make the cells more adhesive to the ECM. Its antiinvasive action is due to an upregulation of tissue inhibitor of matrix metalloprotease 1 (TIMP-1) and plasminogen activator inhibitor (PAI-1) and a downregulation of urokinase-type plasminogen activator (uPA). Molecular mechanisms of inhibition of migration/invasion of EVT cells by decorin and Mel-CAM remain to be identified. IGF-II action has been shown to be mediated by IGF type I receptors (IGF-RII) independently of IGF type I receptors (IGF-RI) and IGFBPs. This action of IGF-II appears to involve inhibitory G proteins and phosphorylation of mitogen-activated protein kinase (MAPK) (extracellular signal-regulated protein kinases 1 and 2 (ERK-1 and ERK-2)). IGFBP-1 stimulation of EVT cell migration appears to occur by binding its Arg-Gly-Asp (RGD) domain to α5β1 integrin, leading to phosphorylation of focal adhesion kinase (FAK) and MAPK (ERK-1 and ERK-2). These studies may improve our understanding of diseases related to abnormal placentation, viz. hypoinvasiveness in preeclampsia and hyperinvasiveness in trophoblastic neoplasms.Key words: trophoblast, migration, integrin, IGF-RII, IGFBP-1.


2002 ◽  
Vol 13 (11) ◽  
pp. 4001-4012 ◽  
Author(s):  
Diying Yao ◽  
Marcelo Ehrlich ◽  
Yoav I. Henis ◽  
Edward B. Leof

Transforming growth factor-β (TGF-β) superfamily members regulate a wide range of biological processes by binding to two transmembrane serine/threonine kinase receptors, type I and type II. We have previously shown that the internalization of these receptors is inhibited by K+ depletion, cytosol acidification, or hypertonic medium, suggesting the involvement of clathrin-coated pits. However, the involvement of the clathrin-associated adaptor complex AP2 and the identity of the AP2 subunit that binds the receptors were not known. Herein, we have studied these issues by combining studies on intact cells with in vitro assays. Using fluorescence photobleaching recovery to measure the lateral mobility of the receptors on live cells (untreated or treated to alter their coated pit structure), we demonstrated that their mobility is restricted by interactions with coated pits. These interactions were transient and mediated through the receptors' cytoplasmic tails. To measure direct binding of the receptors to specific AP2 subunits, we used yeast two-hybrid screens and in vitro biochemical assays. In contrast to most other plasma membrane receptors that bind to AP2 via the μ2 subunit, AP2/TGF-β receptor binding was mediated by a direct interaction between the β2-adaptin N-terminal trunk domain and the cytoplasmic tails of the receptors; no binding was observed to the μ2, α, or ς2 subunits of AP2 or to μ1 of AP1. The data uniquely demonstrate both in vivo and in vitro the ability of β2-adaptin to directly couple TGF-β receptors to AP2 and to clathrin-coated pits, providing the first in vivo evidence for interactions of a transmembrane receptor with β2-adaptin.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 679
Author(s):  
Benedict-Uy Fabia ◽  
Joshua Bingwa ◽  
Jiyeon Park ◽  
Nguyen-Mihn Hieu ◽  
Jung-Hoon Ahn

Pseudomonas fluorescens, a gram-negative bacterium, has been proven to be a capable protein manufacturing factory (PMF). Utilizing its ATP-binding cassette (ABC) transporter, a type I secretion system, P. fluorescens has successfully produced recombinant proteins. However, besides the target proteins, P. fluorescens also secretes unnecessary background proteins that complicate protein purification and other downstream processes. One of the background proteins produced in large amounts is FliC, a flagellin protein. In this study, the master regulator of flagella gene expression, fleQ, was deleted from P. fluorescens Δtp, a lipase and protease double-deletion mutant, via targeted gene knockout. FleQ directs flagella synthesis, so the new strain, P. fluorescens ΔfleQ, does not produce flagella-related proteins. This not only simplifies purification but also makes P. fluorescens ΔfleQ an eco-friendly expression host because it will not survive outside a controlled environment. Six recombinant growth factors, namely, insulin-like growth factors I and II, beta-nerve growth factor, fibroblast growth factor 1, transforming growth factor beta, and tumor necrosis factor beta, prepared using our supercharging method, were successfully secreted by P. fluorescens ΔfleQ. Our findings demonstrate the potential of P. fluorescens ΔfleQ, combined with our supercharging process, as a PMF.


2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.


1994 ◽  
Vol 269 (31) ◽  
pp. 20172-20178 ◽  
Author(s):  
H. Yamashita ◽  
P. ten Dijke ◽  
P. Franzén ◽  
K. Miyazono ◽  
C.H. Heldin

2010 ◽  
Vol 21 (21) ◽  
pp. 3654-3668 ◽  
Author(s):  
Jose V. Moyano ◽  
Patricia G. Greciano ◽  
Mary M. Buschmann ◽  
Manuel Koch ◽  
Karl S. Matlin

Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.


Sign in / Sign up

Export Citation Format

Share Document