THE APPLICATION OF FUZZY AHP – VIKOR HYBRID METHOD TO INVESTIGATE THE STRATEGY FOR REDUCING AIR POLLUTION FROM DIESEL POWERED VESSELS

Author(s):  
H Demirel ◽  
M Mollaoğlu ◽  
U Bucak ◽  
T Arslan ◽  
A Balin

The negative impact of air pollution on human health had become a vital issue as a result of the increasing use of fossil fuels in recent years. In this context, maritime transportation is one of the most contaminant sectors by using much more fossil fuels. Ships which have a major role in maritime transport, directly affect human health via its emissions, especially in marine areas close to the land such as around the ports, canals, and straits. In this study, strategies were gathered by evaluating International Maritime Organization (IMO) regulations, European Union (EU) recommendations and the applications of the ship owner companies to reduce air pollution stem from ships, and considering the priority perception of these strategies, the effect level of the strategies at the marine areas where ships are approaching the land was analysed by the Fuzzy Analytic Hierarchy Process-Visekriterijumska Optimizacija I Kompromisno Resenje (AHP- VIKOR) hybrid method. As a result of the study, the most effective strategies appeared as “Forbiddance of Heavy Fuel Oil (HFO) usage on Ships” and “Detection of Low Sulphur Fuel Usage by the help of Remote Detector Systems”, and it was seen that these strategies would be most effective in canal or strait passing of the ships. It was also revealed that the relevant expert opinions and IMO regulations meshed together, and it was pointed out the applications for increasing fuel quality.

2020 ◽  
Vol 162 (A3) ◽  
Author(s):  
H Demirel ◽  
M Mollaoglu ◽  
U Bucak ◽  
T Arslan ◽  
A Balin

The negative impact of air pollution on human health had become a vital issue as a result of the increasing use of fossil fuels in recent years. In this context, maritime transportation is one of the most contaminant sectors by using much more fossil fuels. Ships which have a major role in maritime transport, directly affect human health via its emissions, especially in marine areas close to the land such as around the ports, canals, and straits. In this study, strategies were gathered by evaluating International Maritime Organization (IMO) regulations, European Union (EU) recommendations and the applications of the ship owner companies to reduce air pollution stem from ships, and considering the priority perception of these strategies, the effect level of the strategies at the marine areas where ships are approaching the land was analysed by the Fuzzy Analytic Hierarchy Process-Visekriterijumska Optimizacija I Kompromisno Resenje (AHP-VIKOR) hybrid method. As a result of the study, the most effective strategies appeared as “Forbiddance of Heavy Fuel Oil (HFO) usage on Ships” and “Detection of Low Sulphur Fuel Usage by the help of Remote Detector Systems”, and it was seen that these strategies would be most effective in canal or strait passing of the ships. It was also revealed that the relevant expert opinions and IMO regulations meshed together, and it was pointed out the applications for increasing fuel quality.


2021 ◽  
Author(s):  
Ahmed Gamal Elkafas ◽  
Mohamed Khalil ◽  
Mohamed R. Shouman ◽  
Mohamed M. Elgohary

Abstract Emissions from vessels are a major environmental concern because of their impacts on the deterioration of the environment, especially global warming of the atmosphere. Therefore, the International Maritime Organization (IMO) concern significant care to environmental protection through the reduction of exhaust emission and improvement of energy efficiency through technical and operational measures. Among the suggested measures from IMO, the alternative fuel such as Liquefied Natural Gas (LNG) has the priority to be used instead of fossil fuels. The present paper calculates the effect of using LNG in a dual fuel engine from Environmental and Energy efficiency perspectives. As a case study, a Container Ship has been investigated. The results of the analysis show that percent of CO2, NOx and SOx emissions reduction corresponding to using a dual-fuel engine operating by LNG instead of a diesel engine operating by Heavy Fuel Oil is about 30.1%,81.44%, and 96.94%, respectively. Also, the attained Energy Efficiency Index Value in the case of using the dual-fuel engine is lower than its value by using diesel engine by about 30% and this value will be 77.18%, 86.84%, and 99.27% of the required value of the first, second and third phases, respectively as recommended by IMO.


2008 ◽  
Vol 61 (4) ◽  
pp. 723-733 ◽  
Author(s):  
S. J. Bijlsma

The air pollution caused by the use of heavy fuel oil in shipping is a growing problem that is drawing increased attention. Methods have been developed to reduce air emissions from ships, more or less aimed at the choice of fuel and the related air emissions. However, the emissions of particulates, sulphur and carbon dioxide, which contribute to the greenhouse effect are not only related to the choice of fuel but also to the amount of fuel consumed in the combustion engines. This paper proposes an additional method that can contribute to the reduction of the air pollution from ships by decreasing the fuel consumption. This is done by specifying the amount of fuel that can be consumed on a specific ocean crossing and by computing a minimal-time route for that given amount of fuel, so decreasing the fuel consumption in a verifiable way.


2018 ◽  
Vol 10 (2) ◽  
pp. 96-104
Author(s):  
MITRA NOORI ◽  
ZAHRA BAGHAEIFAR ◽  
ABDOLKARIM CHEHREGANI ◽  
FARZANEH FARAKI

Noori M, Baghaeifar Z, Chehregani A, Faraki F. 2018. Seeds characters, pollen fertility and flavonoids of ten Brassicaceae collected near a kilns thermal power plant for air pollution bioindication. Nusantara Bioscience 10: 96-104. Shazand Steam Power Plant located on North-East of Shazand, Iran began to work from 2000. The power plant necessity fuel is natural gas and mostly heavy fuel oil. The most pollutant of power plant is sulfur compounds in addition to nitric and carbon mono oxide. Because environmental pollutants influence plant fertility and chemical compounds, therefore this study was done on ten wild Brassicaceae (Alyssum linifolium var. linifolium, Alyssum longistylum, Alyssum marginatum, Choriospora persica, Clypeola lappacea, Conringia perfoliata, Descurainia sophia, Goldbachia laevigata, Isatis kotschyana and Neslia apiculata) taxa collected from the thermal power plant area for bioindication of regional air pollution comparing to controls collected 40 km away from the power plant. Brassicaceae members are important for their ecological, pastoral, medicinal and edible points. Seed width and length max. and their ratio and abnormal seed percentage were calculated. Pollen abnormality and sterility percentages determined using Muntezing’s acetocarmine and light microscopy. Also, their pollen flavonoids were semi-quantitatively assessed using two-dimensional paper and thin layer chromatography. Results showed seeds health and their dimensions reduction in polluted samples in comparison with controls. In C. lappacea significant differences of seed and pollen abnormality and pollen sterility percentages, morin and kaempferol concentrations, between control and polluted samples were observed (P≤0.05). Also, number and kind of pollen flavonoid changes especially increasing flavonoid contents were observed in polluted plants comparing to control. Studying seed and pollen characters can be used as air quality bioindicators.


Author(s):  
Jean-Pierre Stalder ◽  
Peter A. Huber

The use of “clean” fuel is a prerequisite at today’s elevated gas turbine firing temperature, modern engines are more sensitive to high temperature corrosion if there are impurities present in the fuel and/or in the combustion air. It is a common belief that distillate grade fuels are contaminant-free, which is often not true. Frequently operators burning distillates ignore the fuel quality as a possible source of difficulties. This matter being also of concern in plants mainly operated on natural gas and where distillate fuel oil is the back-up fuel. Distillates may contain water, dirt and often trace metals such as sodium, vanadium and lead which can cause severe damages to the gas turbines. Sodium being very often introduced through contamination with seawater during the fuel storage and delivery chain to the plant, and in combination, or with air borne salt ingested by the combustion air. Excursions of sodium in treated crude or heavy fuel oil can occur during unnoticed malfunctions of the fuel treatment plant, when changing the heavy fuel provenience without centrifuge adjustment, or by inadequate fuel handling. For burning heavy fuel, treatment with oil-soluble magnesium fuel additive is state of the art to inhibit hot corrosion caused by vanadium. Air borne salts, sodium, potassium and lead contaminated distillates, gaseous fuels, washed and unwashed crude and residual oil can not be handled by simple magnesium based additives. The addition of elements like silicon and/or chromium is highly effective in reducing turbine blade hot corrosion and hot section fouling. This paper describes field experience with the use of chromium containing fuel additive to reduce high temperature corrosion of hot section parts, as well as the interaction of oil-soluble chromium and magnesium-chromium additives on material behaviour of blades and vanes, and their economical and environmental aspects.


2020 ◽  
Vol 12 (22) ◽  
pp. 9585
Author(s):  
Yu Yong Ung ◽  
Park Sung Ho ◽  
Jung Dong Ho ◽  
Lee Chang Hee

The International Maritime Organization has strengthened global environmental regulations related to sulfur and nitrogen oxides contained in ship fuel oil since the beginning of 2020. One strategy to comply with the regulations is to fuel ships with liquefied natural gas (LNG) rather than with traditional heavy fuel oil. China and Japan are both developing a business structure for the bunkering of LNG through public–private partnerships to expand their leadership in the field in Northeast Asia and secure a competitive advantage. Compared to China and Japan, Korea has relatively inadequate laws, policy support, and best practices for safe and efficient LNG bunkering for ships. This article provides a comprehensive overview of the LNG bunkering regulation systems in China and Japan and addresses how these systems can be mirrored by Korea to improve the Korean system. It compares the legislative and normative rules of China and Japan regarding the complex global scenario of maritime transportation. The results show that Korea must revise its guidelines and create the advanced institutional framework required for the LNG bunkering market to support an eco-friendly shipping industry and maintain a competitive edge against China and Japan.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8502
Author(s):  
Li Chin Law ◽  
Beatrice Foscoli ◽  
Epaminondas Mastorakos ◽  
Stephen Evans

Decarbonization of the shipping sector is inevitable and can be made by transitioning into low- or zero-carbon marine fuels. This paper reviews 22 potential pathways, including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case, “blue” alternative fuel produced from natural gas, and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass, (ii) fuel volume, (iii) life cycle (Well-To-Wake—WTW) energy intensity, (iv) WTW cost, (v) WTW greenhouse gas (GHG) emission, and (vi) non-GHG emissions, estimated from the literature and ASPEN HYSYS modelling. From an energy perspective, renewable electricity with battery technology is the most efficient route, albeit still impractical for long-distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency), which also happens to be the lowest cost solution, although the long-term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost, availability, and technology readiness level (TRL); however, the non-GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean-up measures. Methanol from LNG needs CCS for decarbonization, while methanol from biomass does not, and also seems to be a good candidate in terms of energy, financial cost, and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.


2015 ◽  
Vol 656-657 ◽  
pp. 142-147 ◽  
Author(s):  
Tien Chiu Hsu ◽  
S.I. Yang

Coal is currently the most widely used and most abundant fossil fuel in the world. It is primarily used for generating electricity at power plants. However, due to problems of pollution and energy consumption, importance has been placed on the development of clean coal technology. Coal-water slurry (CWS), consisting of fine coal and water mixture, is a liquid fuel used to replace heavy fuel oil for boilers and entrained flow gasifiers. Since CWS is a liquid with high viscosity and regular atomizing burners are designed for the use of fossil fuels with low viscosity, it is necessary to design high efficiency atomizing burners specific for CWS. As viscosity is a key factor for atomization characteristics, we used silicon oils of different viscosity as the testing liquids, to study the effect of different atomization parameters on the atomization characteristics. Our results show that, when the gas to liquid ratio (GLR) is high, the existing particle velocity at the central axis is lower than low GLR condition; likewise, the velocity at radial positions is higher of the high-viscosity case. The velocity also increases as the radial distance further increases away from the axis. And decrease as the GLR increases. On the other hand, the distribution of the velocities does not change after the radial distance reaches a certain limit. This limit decreases as the axial length increases. Increasing viscosity increases the inertial force of the liquid fluid, so the momentum of the atomization gas needs to be increased for it to generate enough shear stress on the fluid and to enhance the atomization characteristics.


Author(s):  
M. Bolla ◽  
M. A. Cattin ◽  
Y. M. Wright ◽  
K. Boulouchos ◽  
R. Schulz

The behavior of lagrangian spray models for the application in large two stroke marine engines is investigated. 3D-CFD simulations of a Spray Combustion Chamber (SCC) with a single hole (0.875 mm diameter) injector are presented and compared with experimental results. Shadow images of the spray under evaporating and non-evaporating conditions, with and without swirl flow and for different chamber pressures are available by means of which the simulation results are validated. A novel post processing methodology for 3D CFD spray simulations is introduced, which converts the numerical data into images which allows for a more rigorous quantitative comparison with the experimental data. Good agreement of the simulation results with the experiment is reported both in terms of spray penetration as well as concerning the evaporation of the fuel. Since the appropriate discretization of the large volumes typical of 2-stroke marine engines presents a substantial challenge, the influence of the grid resolution is investigated. In addition, the influence of fuel quality on the evolution of the spray morphology is assessed. For this purpose, simulations with heavy fuel oil (HFO) are compared with experiment.


2020 ◽  
Vol 12 (21) ◽  
pp. 8793 ◽  
Author(s):  
Elizabeth Lindstad ◽  
Gunnar S. Eskeland ◽  
Agathe Rialland ◽  
Anders Valland

Current Greenhous gas emissions (GHG) from maritime transport represent around 3% of global anthropogenic GHG emissions and will have to be cut in half by 2050 to meet Paris agreement goals. Liquefied natural gas (LNG) is by many seen as a potential transition fuel for decarbonizing shipping. Its favorable hydrogen to carbon ratio compared to diesel (marine gas oil, MGO) or bunker fuel (heavy fuel oil, HFO) translates directly into lower carbon emissions per kilowatt produced. However, these gains may be nullified once one includes the higher Well-to-tank emissions (WTT) of the LNG supply chain and the vessel’s un-combusted methane slip (CH4) from its combustion engine. Previous studies have tended to focus either on greenhouse gas emissions from LNG in a Well-to-wake (WTW) perspective, or on alternative engine technologies and their impact on the vessel’s Tank-to-wake emissions (TTW). This study investigates under what conditions LNG can serve as a transition fuel in the decarbonization of maritime transport, while ensuring the lowest possible additional global warming impact. Transition refers to the process of moving away from fossil fuels towards new and low carbon fuels and engine technologies. Our results show: First, the importance of applying appropriate engine technologies to maximize GHG reductions; Second, that applying best engine technologies is not economically profitable; Third, how regulations could be amended to reward best engine technologies. Importantly, while the GHG reduction of LNG even with best engine technology (dual fuel diesel engine) are limited, ships with these engines can with economically modest modification switch to ammonia produced with renewable energy when it becomes available in sufficient amounts.


Sign in / Sign up

Export Citation Format

Share Document