scholarly journals Regulation of Cell Fate in the Brain by GSK3

Author(s):  
Adam R.
Keyword(s):  
Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 325
Author(s):  
Petra Korać ◽  
Mariastefania Antica ◽  
Maja Matulić

MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meng Zhang ◽  
Junjie Zhou ◽  
Li Jiao ◽  
Longjiang Xu ◽  
Lin Hou ◽  
...  

Neurogenesis is a complex process that depends on the delicate regulation of spatial and temporal gene expression. In our previous study, we found that transcribed ultra-conserved regions (T-UCRs), a class of long non-coding RNAs that contain UCRs, are expressed in the developing nervous systems of mice, rhesus monkeys, and humans. In this study, we first detected the full-length sequence of T-uc.189, revealing that it was mainly concentrated in the ventricular zone (VZ) and that its expression decreased as the brain matured. Moreover, we demonstrated that knockdown of T-uc.189 inhibited neurogenesis. In addition, we found that T-uc.189 positively regulated the expression of serine-arginine-rich splicing factor 3 (Srsf3). Taken together, our results are the first to demonstrate that T-uc.189 regulates the expression of Srsf3 to maintain normal neurogenesis during cortical development.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fiorella Rossi ◽  
Hunter Noren ◽  
Richard Jove ◽  
Vladimir Beljanski ◽  
Karl-Henrik Grinnemo

AbstractOver the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.


2006 ◽  
Vol 56 (5) ◽  
pp. 1001-1010 ◽  
Author(s):  
Chris Heyn ◽  
John A. Ronald ◽  
Soha S. Ramadan ◽  
Jonatan A. Snir ◽  
Andrea M. Barry ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Gregory J. Gillispie ◽  
Eric Sah ◽  
Sudarshan Krishnamurthy ◽  
Mohamed Y. Ahmidouch ◽  
Bin Zhang ◽  
...  

Cellular stress responses influence cell fate decisions. Apoptosis and proliferation represent opposing reactions to cellular stress or damage and may influence distinct health outcomes. Clinical and epidemiological studies consistently report inverse comorbidities between age-associated neurodegenerative diseases and cancer. This review discusses how one particular stress response, cellular senescence, may contribute to this inverse correlation. In mitotically competent cells, senescence is favorable over uncontrolled proliferation, i.e., cancer. However, senescent cells notoriously secrete deleterious molecules that drive disease, dysfunction and degeneration in surrounding tissue. In recent years, senescent cells have emerged as unexpected mediators of neurodegenerative diseases. The present review uses pre-defined criteria to evaluate evidence of cellular senescence in mitotically competent brain cells, highlights the discovery of novel molecular regulators and discusses how this single cell fate decision impacts cancer and degeneration in the brain. We also underscore methodological considerations required to appropriately evaluate the cellular senescence stress response in the brain.


2018 ◽  
Author(s):  
Shiekh Tanveer Ahmad ◽  
Alexandra D. Rogers ◽  
Myra J. Chen ◽  
Rajiv Dixit ◽  
Lata Adnani ◽  
...  

ABSTRACTCapicua (Cic) is a transcriptional repressor mutated in the brain cancer oligodendroglioma. Despite its cancer link, little is known of Cic’s function in the brain. Here, we investigated the relationship between Cic expression and cell type specification in the brain. Cic is strongly expressed in astrocytic and neuronal lineage cells but is more weakly expressed in stem cells and oligodendroglial lineage cells. Using a new conditionalCicknockout mouse, we show that forebrain-specificCicdeletion increases proliferation and self-renewal of neural stem cells. Furthermore,Cicloss biases neural stem cells toward glial lineage selection, expanding the pool of oligodendrocyte precursor cells (OPCs). These proliferation and lineage selection effects in the developing brain are dependent on de-repression of Ets transcription factors. In patient-derived oligodendroglioma cells, CIC re-expression or ETV5 blockade decreases lineage bias, proliferation, self-renewal and tumorigenicity. Our results identify Cic is an important regulator of cell fate in neurodevelopment and oligodendroglioma, and suggest that its loss contributes to oligodendroglioma by promoting proliferation and an OPC-like identity via Ets overactivity.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Yukiko Gotoh

Abstract Quiescent neural stem cells (NSCs) in the adult mouse brain are the source of neurogenesis that regulates innate and adaptive behaviors. Adult NSCs in the subventricular zone (SVZ) are derived from a subpopulation of embryonic neural stem-progenitor cells (NPCs) that is characterized by a slower cell cycle relative to the more abundant rapid cycling NPCs that build the brain. We have previously shown that slow cell cycle can cause the establishment of adult NSCs at the SVZ, although the underlying mechanism remains unknown. We found that Notch and an effector Hey1 form a module that is upregulated by cell cycle arrest in slowly dividing NPCs. In contrast to the oscillatory expression of the Notch effectors Hes1 and Hes5 in fast cycling progenitors, Hey1 displays a non-oscillatory stationary expression pattern and contributes to the long-term maintenance of NSCs. These findings reveal a novel division of labor in Notch effectors where cell cycle rate biases effector selection and cell fate. I will also discuss the heterogeneity of slowly dividing embryonic NPCs and the lineage relationship between adult NSCs and ependymal cells, which together form the niche for adult neurogenesis at the SVZ.


Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1277-1286 ◽  
Author(s):  
P.C. Salinas ◽  
C. Fletcher ◽  
N.G. Copeland ◽  
N.A. Jenkins ◽  
R. Nusse

Wnt genes encode secreted proteins implicated in cell fate changes during development. To define specific cell populations in which Wnt genes act, we have examined Wnt expression in the cerebellum. This part of the brain has a relatively simple structure and contains well-characterized cell populations. We found that Wnt-3 is expressed during development of the cerebellum and that expression is restricted to the Purkinje cell layer in the adult. Wnt-3 expression in Purkinje cells increases postnatally as granule cells start to make contacts with Purkinje cells. To investigate whether interactions with granule cells influence Wnt-3 expression in Purkinje cells, we examined gene expression in several mouse mutants, using the expression of En-2 to follow the fate of granule cells. In the weaver mutant, in which granule cells fail to migrate and subsequently die in the external granular layer, Wnt-3 expression was normal at postnatal day 15 (P15). At that time, some granule cells are still present in the external granular layer. At P28, however, when granule cells could no longer be detected, Wnt-3 expression was almost absent. In the meander tail mutant, in which the anterior cerebellar lobes lack granule cells, Wnt-3 expression was only detected in the normal posterior lobes. Since En genes are implicated in cell-cell interactions mediated by Wnt genes, we examined En-2/En-2 mutant mice, finding normal Wnt-3 expression, indicating that the effect of granule cells on the maintenance of Wnt-3 is not mediated by En-2. Our results show that Wnt-3 expression in Purkinje cells is modulated by their presynaptic granule cells at the time of neuronal maturation.


Author(s):  
Paula García-Belda ◽  
Helena Prima-García ◽  
Alicia Aliena-Valero ◽  
María Castelló-Ruiz ◽  
María José Ulloa-Navas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document