scholarly journals The Brown Seaweeds Fishery in Chile

Author(s):  
Julio A. Vásquez
Keyword(s):  
2016 ◽  
Vol 128 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Siham Esserti ◽  
Mohamed Faize ◽  
Lalla Aicha Rifai ◽  
Amal Smaili ◽  
Malika Belfaiza ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 188
Author(s):  
Antia G. Pereira ◽  
Paz Otero ◽  
Javier Echave ◽  
Anxo Carreira-Casais ◽  
Franklin Chamorro ◽  
...  

Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.


2021 ◽  
Author(s):  
Priscila Costa Rezende ◽  
Mariana Soares ◽  
Ariane Martins Guimarães ◽  
Jaqueline Rosa Coelho ◽  
Walter Quadros Seiffert ◽  
...  

Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 59
Author(s):  
Omar Al-Dulaimi ◽  
Mostafa E. Rateb ◽  
Andrew S. Hursthouse ◽  
Gary Thomson ◽  
Mohammed Yaseen

More than 50% of the UK coastline is situated in Scotland under legislative jurisdiction; therefore, there is a great opportunity for regionally focused economic development by the rational use of sustainable marine bio-sources. We review the importance of seaweeds in general, and more specifically, wrack brown seaweeds which are washed from the sea and accumulated in the wrack zone and their economic impact. Rules and regulations governing the harvesting of seaweed, potential sites for harvesting, along with the status of industrial application are discussed. We describe extraction and separation methods of natural products from these seaweeds along with their phytochemical profiles. Many potential applications for these derivatives exist in agriculture, energy, nutrition, biomaterials, waste treatment (composting), pharmaceuticals, cosmetics and other applications. The chemical diversity of the natural compounds present in these seaweeds is an opportunity to further investigate a range of chemical scaffolds, evaluate their biological activities, and develop them for better pharmaceutical or biotechnological applications. The key message is the significant opportunity for the development of high value products from a seaweed processing industry in Scotland, based on a sustainable resource, and locally regulated.


2016 ◽  
Vol 29 (1) ◽  
pp. 543-553 ◽  
Author(s):  
Olesya S. Malyarenko ◽  
Roza V. Usoltseva ◽  
Natalia M. Shevchenko ◽  
Vladimir V. Isakov ◽  
Tatyana N. Zvyagintseva ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1306
Author(s):  
Diane Purcell-Meyerink ◽  
Michael A. Packer ◽  
Thomas T. Wheeler ◽  
Maria Hayes

Seaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlighted.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 714
Author(s):  
Enver Keleszade ◽  
Michael Patterson ◽  
Steven Trangmar ◽  
Kieran J. Guinan ◽  
Adele Costabile

Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 30
Author(s):  
Blessing Mabate ◽  
Chantal Désirée Daub ◽  
Samkelo Malgas ◽  
Adrienne Lesley Edkins ◽  
Brett Ivan Pletschke

Fucoidans are complex polysaccharides derived from brown seaweeds which consist of considerable proportions of L-fucose and other monosaccharides, and sulphated ester residues. The search for novel and natural bioproduct drugs (due to toxicity issues associated with chemotherapeutics) has led to the extensive study of fucoidan due to reports of it having several bioactive characteristics. Among other fucoidan bioactivities, antidiabetic and anticancer properties have received the most research attention in the past decade. However, the elucidation of the fucoidan structure and its biological activity is still vague. In addition, research has suggested that there is a link between diabetes and cancer; however, limited data exist where dual chemotherapeutic efforts are elucidated. This review provides an overview of glucose metabolism, which is the central process involved in the progression of both diseases. We also highlight potential therapeutic targets and show the relevance of fucoidan and its derivatives as a candidate for both cancer and diabetes therapy.


Sign in / Sign up

Export Citation Format

Share Document