Integrated Management of the Cattle Tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and the Acaricide Resistance Mitigation

2021 ◽  
Author(s):  
Rodrigo Rosario Cruz ◽  
Delia Inés Domínguez García ◽  
Saúl López Silva ◽  
Fernando Rosario Domínguez

Resistance to insecticides is one of the major obstacles to the control of agricultural pests, as well as species important to human and veterinary health. The World Health Organization has called insecticide resistance “the great little obstacle against vector-borne diseases”. Rhipicephalus (Boophilus) microplus is one of the most important vector, transmitting diseases to cattle such as anaplasmosis and babesiosis. These diseases cause great economic losses that significantly increased because of the appearance of tick populations resistant to acaricides, as a result of the intensive use of pesticides. Resistance to ixodicides in Latin America is a growing problem, since control of disease-transmitting ticks, depends heavily on the use of pesticides. In Mexico, the resistance of R. microplus to organophosphate compounds, pyrethroids, and recently amidines, has been detected in some areas, affected by multiple acaricide resistance to the three families of ixodicides. The cattle tick R. microplus in addition to the great ecological impact represents the most expensive pest for livestock in Mexico, since the producers are directly affected by this tick, due to the decrease in the production of meat, milk and damage to the skin, as well as the indirect damage, such as the transmission of diseases, including Anaplasmosis and Babesiosis, which, in turn, represents a serious limitation for the introduction of specialized cattle in endemic areas. Therefore, the use of integrated management programs is a mandatory issue that should be implemented in all those areas affected by this parasite.

Author(s):  
Mara Moreno-Gómez ◽  
Rubén Bueno-Marí ◽  
Andrea Drago ◽  
Miguel A Miranda

Abstract Vector-borne diseases are a worldwide threat to human health. Often, no vaccines or treatments exist. Thus, personal protection products play an essential role in limiting transmission. The World Health Organization (WHO) arm-in-cage (AIC) test is the most common method for evaluating the efficacy of topical repellents, but it remains unclear whether AIC testing conditions recreate the mosquito landing rates in the field. This study aimed to estimate the landing rate outdoors, in an area of Europe highly infested with the Asian tiger mosquito (Aedes albopictus (Skuse, 1894, Diptera: Culididae)), and to determine how to replicate this rate in the laboratory. To assess the landing rate in the field, 16 individuals were exposed to mosquitoes in a highly infested region of Italy. These field results were then compared to results obtained in the laboratory: 1) in a 30 m3 room where nine volunteers were exposed to different mosquito abundances (ranges: 15–20, 25–30, and 45–50) and 2) in a 0.064 m3 AIC test cage where 10 individuals exposed their arms to 200 mosquitoes (as per WHO requirements). The highest mosquito landing rate in the field was 26.8 landings/min. In the room test, a similar landing rate was achieved using 15–20 mosquitoes (density: 0.50–0.66 mosquitoes/m3) and an exposure time of 3 min. In the AIC test using 200 mosquitoes (density: 3,125 mosquitoes/m3), the landing rate was 229 ± 48 landings/min. This study provides useful reference values that can be employed to design new evaluation standards for topical repellents that better simulate field conditions.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Alejandra Molano-Triviño ◽  
Jasmin Vesga ◽  
Gregorio Romero ◽  
Claudio Ronco

Abstract Background and Aims Expanded hemodialysis (HDx) improves clearance of middle molecules as a target for uremia treatment. According to previously published results, high cut off filters have high enough clearance to allow diminishing of dialysate flow (Qd) without detrimental in HD adequacy outcomes with less water waste. According to World Health Organization (WHO), globally, almost 800 million people lack access to safe water and 2.5 billion lack access to optimal sanitation. Is our duty to search for ways to avoid water waste. Our aim is to describe the differences in water use between HDX patients receiving Qd 400 mL/min (Group 1) vs 500 ml/min (group 2) in HD patients from 10 renal clinics in Colombia as an alternative to reduce water waste in chronic HD as a strategy from Blue Planet Dialysis initiatives. Method We performed a Sub-analysis of CORHEX Study: We calculated water use at different Qd from our database: prospective, multicentre, observational cohort study of 992 adult patients undergoing chronic HD from 12 renal clinics in Colombia who were switched from high-flux HD to MCO therapy and observed for 12 months. All patients were prescribed with HDX three times a week for a minimum of 4 hours. We analysed patients with weight lower than 70 Kg at different Qd prescriptions to calculate water use at different Qd prescriptions and performed a prediction analysis, adjusting to Qd 400 mL/min, the whole potential population with weight lower than 70 Kg. Results 462 patients with weight lower than 70 Kg were analysed, 127 patients received Qd 400 mL/min. When diminishing Qd from 500 to 400 mL/min, 24 litres were saved per session per patient without detriment of middle molecule clearance. There were no differences in adequacy HD parameters between Qd prescriptions (Table 1 and 2). Conclusion HDX allows lowering of Qd to 400 mL/min without harm for patients and with remarkable savings of potable water: 24 Litres were saved in each session per patient that can be translated in almost 3500 Litres of water each year by patient which is enough for one year for 47 adults. (Based on the WHO minimum for basic health protection of at least 20 L per person/day) (2). We consider our results especially relevant since the World Health Organization estimates that within the next 5 years, over 50% of world population could reside in geographies lacking sufficient access to water. We hope that our results from the Blue Planet dialysis research group, alongside with Dr. Agar`s and Dr. Barraclough`s green nephrology initiatives, can help educate the nephrology community on the ecological impact of dialysis and can present an innovative solution to offer HD therapy even in countries suffering from limited access to potable water.


2018 ◽  
Vol 84 (0) ◽  
Author(s):  
Eduardo Oliveira ◽  
Manoela da Silva ◽  
Lew Sprenger ◽  
Daniela Pedrassani

ABSTRACT: Rhipicephalus (Boophilus) microplus, known as the cattle tick, is a cause of great economic losses for dairy cattle farming because of its high frequency of occurrence and the difficulty in controlling it. The aim of this study was to evaluate the in vitro activity of Chenopodium ambrosioides extract on R. (B.) microplus. For this purpose, 125 females were selected and classified into five groups according to their weight, in order to ensure that the females used presented homogeneous weight. The treatments comprised 40 and 60% extracts of Chenopodium ambrosioides, distilled water, ethanol (70ºGL) and 12.5% amitraz. The extracts of C. ambrosioides (40 and 60%) showed effectiveness of 99.7 and 100% and higher percentages of dead females than the other treatments: 64 and 96%, respectively (p<0.001). In the groups exposed to distilled water and ethanol (70º GL), 92 and 88% of the females maintained oviposition. In the females exposed to 40 and 60% extracts, oviposition of 36 and 4% occurred, respectively. It was concluded that the extract of Chenopodium ambrosioides, at both concentration evaluated, had high efficiency against engorged females of cattle ticks.


2011 ◽  
Vol 20 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Rodrigo Casquero Cunha ◽  
Renato Andreotti ◽  
Fábio Pereira Leivas Leite

The cattle tick Rhipicephalus (Boophilus) microplus is responsible for great economic losses. It is mainly controlled chemically, with limitations regarding development of resistance to the chemicals. Vaccines may help control this parasite, thereby reducing tick pesticide use. In this light, we performed subcloning of the gene of the protein Bm86-GC, the homologue protein that currently forms the basis of vaccines (GavacTM and TickGardPLUS) that have been developed against cattle ticks. The subcloning was done in the pPIC9 expression vector, for transformation in the yeast Pichia pastoris. This protein was characterized by expression of the recombinant Mut+ strain, which expressed greater quantities of protein. The expressed protein (rBm86-CG) was recognized in the Western-blot assay using anti-Gavac, anti-TickGard, anti-larval extract and anti-rBm86-CG polyclonal sera. The serum produced in cattle vaccinated with the antigen CG rBm86 presented high antibody titers and recognized the native protein. The rBm86-GC has potential relevance as an immunogen for vaccine formulation against cattle ticks.


Author(s):  
Emily Chan ◽  
Tiffany Sham ◽  
Tayyab Shahzada ◽  
Caroline Dubois ◽  
Zhe Huang ◽  
...  

Climate change is expanding the global at-risk population for vector-borne diseases (VBDs). The World Health Organization (WHO) health emergency and disaster risk management (health-EDRM) framework emphasises the importance of primary prevention of biological hazards and its value in protecting against VBDs. The framework encourages stakeholder coordination and information sharing, though there is still a need to reinforce prevention and recovery within disaster management. This keyword-search based narrative literature review searched databases PubMed, Google Scholar, Embase and Medline between January 2000 and May 2020, and identified 134 publications. In total, 10 health-EDRM primary prevention measures are summarised at three levels (personal, environmental and household). Enabling factor, limiting factors, co-benefits and strength of evidence were identified. Current studies on primary prevention measures for VBDs focus on health risk-reduction, with minimal evaluation of actual disease reduction. Although prevention against mosquito-borne diseases, notably malaria, has been well-studied, research on other vectors and VBDs remains limited. Other gaps included the limited evidence pertaining to prevention in resource-poor settings and the efficacy of alternatives, discrepancies amongst agencies’ recommendations, and limited studies on the impact of technological advancements and habitat change on VBD prevalence. Health-EDRM primary prevention measures for VBDs require high-priority research to facilitate multifaceted, multi-sectoral, coordinated responses that will enable effective risk mitigation.


2020 ◽  
pp. 00518-2020
Author(s):  
Amy Sarah Ginsburg ◽  
Pio Vitorino ◽  
Zunera Qasim ◽  
Jennifer L. Lenahan ◽  
Jun Hwang ◽  
...  

ObjectiveImproved pneumonia diagnostics are needed, particularly in resource-constrained settings. Lung ultrasound (LUS) is a promising point-of-care imaging technology for diagnosing pneumonia. The objective was to explore LUS patterns associated with pediatric pneumonia.MethodsWe conducted a prospective, observational study among children aged 2 through 23 months with World Health Organization Integrated Management of Childhood Illness chest-indrawing pneumonia and among children without fast breathing, chest indrawing or fever (no pneumonia cohort) at two district hospitals in Mozambique and Pakistan. We assessed LUS and chest radiograph (CXR) examinations, and viral and bacterial nasopharyngeal carriage, and performed a secondary analysis of LUS patterns.ResultsLUS demonstrated a range of distinctive patterns that differed between children with and without pneumonia and between children in Mozambique versus Pakistan. The presence of LUS consolidation or interstitial patterns was more common in children with chest-indrawing pneumonia than in those without pneumonia. Consolidations were also more common among those with only bacterial but no viral carriage detected (50.0%) than among those with both (13.0%) and those with only virus detected (8.3%;p-value 0.03). LUS showed high interrater reliability among expert LUS interpreters for overall determination of pneumonia (κ=0.915), consolidation (κ=0.915), and interstitial patterns (κ=0.901), but interrater reliability between LUS and CXR for detecting consolidations was poor (κ=0.159, Pakistan) to fair (κ=0.453, Mozambique).DiscussionPattern recognition was discordant between LUS and CXR imaging modalities. Further research is needed to define and standardise LUS patterns associated with pediatric pneumonia and to evaluate the potential value of LUS as a reference standard.


Nosocomial infections are one of the major causes of disease globally, leading to the most frequent adverse events in healthcare setups worldwide [1]. Millions of patients are affected by nosocomial infections each year globally, bringing about significant mortality and economic losses in healthcare systems. At any given time, the prevalence of health care-associated infections in developed countries varies between 3% to 15% [2]. Moreover, nosocomial infections are becoming even more complicated to treat as antibiotic resistance surfaces up. Recent reports from Centre for Disease Control (CDC) and World Health Organization (WHO) have indicated that nosocomial infections accounts for approximately 2 million infections and 90,000 deaths per year, out of which nearly 23% deaths are attributed to reemerging antibiotic resistant pathogens [3]. Antibiotics comprising bactericidal or bacteriostatic chemotherapeutic agents are presently the only available therapeutic option for the management and deterrence of infectious diseases. However, several drug resistant microbes are emerging as a result of continuous mutations, there by restraining the efficacy of such pharmaceuticals [4]. Over use of antibiotics imposes selective pressure on a specific population of bacteria, thereby allowing the resistant bacteria to thrive and the susceptible bacteria to die off[5].


Author(s):  
Antonio Ligsay ◽  
Olivier Telle ◽  
Richard Paul

Cities worldwide are facing ever-increasing pressure to develop mitigation strategies for all sectors to deal with the impacts of climate change. Cities are expected to house 70% of the world&rsquo;s population by 2050 and developing related resilient health systems is a significant challenge. Because of their physical nature, cities&rsquo; surface temperatures are often substantially higher than that of the surrounding rural areas, generating the so-called Urban Heat Island (UHI) effect. Whilst considerable emphasis has been placed on strategies to mitigate against the UHI-associated negative health effects of heat and pollution, the World Health Organization estimates that one of the main consequences of global warming will be an increased burden of such vector-borne diseases. Many of the major mosquito-borne diseases are urban and thus the global population exposed to these pathogens will steadily increase. Mitigation strategies beneficial for one sector may, however, be detrimental for another. Implementation of inter-sectoral strategies that can benefit many sectors (such as water, labour and health) do exist and would enable optimal use of the meagre resources available. Discussion among inter-sectoral stakeholders should be actively encouraged.


2019 ◽  
Author(s):  
Laura R.H. Ahlers ◽  
Chasity E. Trammell ◽  
Grace F. Carrell ◽  
Sophie Mackinnon ◽  
Brandi K. Torrevillas ◽  
...  

SUMMARYThe World Health Organization estimates that over half of the world’s population is at risk for vector-borne diseases, such as those caused by arboviral infection. Because many arboviruses are mosquito-borne, investigation of the insect immune response will help identify targets that could reduce the spread of these viruses by the mosquito. In this study, we used a genetic screening approach to identify insulin-like receptor as a novel component of the immune response to arboviral infection. We determined that vertebrate insulin reduces West Nile virus (WNV) replication in Drosophila melanogaster as well as WNV, Zika, and dengue virus titers in mosquito cells. Mechanistically, we showed that insulin signaling activates the JAK/STAT, but not RNAi, pathway to control infection. Finally, we validated that insulin priming of adult female Culex mosquitoes through a blood meal reduces WNV infection, demonstrating an essential role for insulin signaling in insect antiviral responses to emerging human pathogens.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2536
Author(s):  
Sophie M. Briffa

Plastics are considered one of the most serious environmental global concerns as they are ubiquitous and contribute to the build-up of pollution. In August 2020, the BBC reported that scientists found 12–21 million tonnes of tiny plastic fragments floating in the Atlantic Ocean. After release into the environment, plastics from consumer items, such as cosmetics and biomedical products, are subject to degradation and break down into microplastics (<5 mm in diameter) and eventually into nanoplastics (<100 nm in at least one dimension). Given their global abundance and environmental persistence, exposure of humans and animals to these micro- and nano- plastics is unavoidable. “We urgently need to know more about the health impact of microplastics because they are everywhere”, says Dr Maria Neira, Director at the World Health Organization. Nanoplastics are also an emerging environmental concern as little is known about their generation, degradation, transformation, ageing, and transportation. Owing to their small size, nanoplastics can be trapped by filter-feeding organisms and can enter the food chain at an early stage. Therefore, there is a gap in the knowledge that vitally needs to be addressed. This minireview considers how nanoplastic research can be made more quantifiable through traceable and trackable plastic particles and more environmentally realistic by considering the changes over time. It considers how nanoplastic research can use industrially realistic samples and be more impactful by incorporating the ecological impact.


Sign in / Sign up

Export Citation Format

Share Document