scholarly journals A BIM-Based Study on the Sunlight Simulation in Order to Calculate Solar Energy for Sustainable Buildings with Solar Panels

Author(s):  
Zhao Xu ◽  
Jingfeng Yuan
2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


2021 ◽  
Vol 7 (20) ◽  
pp. 202129
Author(s):  
Vivyane Alencar Marques Araújo do Nascimento ◽  
Taynara Bastos Trindade ◽  
Clarice Maia Carvalho

ANALYSIS OF PARAMETERS FOR PHOTOVOLTAIC SOLAR ENERGY GENERATION IN ACRE, BRAZILANÁLISIS DE PARÁMETROS PARA LA GENERACIÓN DE ENERGÍA SOLAR FOTOVOLTAICA EN ACRE, BRASILRESUMOEnergia solar é obtida através de placas solares fotovoltaicas com a função de captar a energia do sol e transformar em energia elétrica, aumentando a geração de energia solar nas regiões com maior captação de energia luminosa. Assim, neste artigo analisou-se os parâmetros para geração de energia solar fotovoltaica no Acre, Brasil. Coletou-se dados referentes a insolação, temperaturas máximas e mínimas, precipitação e umidade relativa no Instituto Nacional de Meteorologia, irradiação solar, no Centro de Referências para Energias Solar e Eólica Sérgio de S. Brito, regionais do Vale do Juruá e Vale do Acre, no período de 2015-2020. As análises foram quantitativas, utilizando o cálculo da média e cálculo do plano inclinado. Na comparação das regionais, o Vale do Acre apresentou melhores resultados para geração de energia solar e com um ângulo com a maior média diária anual de irradiação solar, considerando-se projetar-se células fotovoltaicas na regional. O trabalho apresenta que o Acre possui bastante insolação e irradiação solar, indicando alto potencial de geração de energia solar para as regionais do estado.Palavras-chave: Eficiência Fotovoltaica; Radiação Solar; Temperatura da Célula Fotovoltaica; Irradiação.ABSTRACTSolar energy is obtained through photovoltaic solar panels with the function of capturing the sun's energy and transforming it into electrical energy, increasing the generation of solar energy in regions with greater capture of light energy. Thus, the parameters for the generation of photovoltaic solar energy in Acre, Brazil were analyzed. Data on insolation, maximum and minimum temperatures, precipitation and relative humidity were collected at the National Institute of Meteorology, solar irradiation, at the Reference Center for Solar and Wind Energy Sérgio de S. Brito, regions of Vale do Juruá and Vale do Acre, in the period 2015-2020. Analyzes were quantitative, using mean calculation and inclined plane calculation. When comparing the regions, Vale do Acre presented better results for solar energy generation and with an angle with the highest annual daily average of solar irradiation, considering the project of photovoltaic cells in the region. The work shows that Acre has a lot of insolation and solar irradiation, indicating a high potential for generating solar energy for the regional regions of the state.Keywords: Photovoltaic Efficiency; Solar Radiation; Photovoltaic Cell Temperature; Irradiation.RESUMENLa energía solar se obtiene a través de paneles solares fotovoltaicos con la función de captar la energía del sol y transformarla en energía eléctrica, aumentando la generación de energía solar en las regiones con mayor captación de energía luminosa. Así, se analizaron los parámetros para la generación de energía solar fotovoltaica en Acre, Brasil. Los datos sobre insolación, temperaturas máximas y mínimas, precipitación y humedad relativa fueron recolectados en el Instituto Nacional de Meteorología, irradiación solar, en el Centro de Referencia de Energía Solar y Eólica Sérgio de S. Brito, regiones de Vale do Juruá y Vale do Acre, en el período 2015-2020. Los análisis fueron cuantitativos, utilizando cálculo de medias y cálculo de plano inclinado. Al comparar las regiones, Vale do Acre presentó mejores resultados para la generación de energía solar y con un ángulo con el promedio diario anual más alto de irradiación solar, considerando el diseño de células fotovoltaicas en la región. El trabajo muestra que Acre tiene mucha insolación e irradiación solar, lo que indica un alto potencial de generación de energía solar para las regiones regionales del estado.Palabras clave: Eficiencia Fotovoltaica; Radiación Solar; Temperatura de la Celda Fotovoltaica; Irradiación.


2019 ◽  
Vol 3 (1) ◽  
pp. 29-35
Author(s):  
M Barkah Salim ◽  
Nurlaila Rajabiah

The sun is a source of energy that cannot be used up. Therefore, the utilization of solar energy must be a priority. With the many types of solar panels that have been developed, researchers conducted an analysis of 150 watt monocrystalline solar panels. The purpose of this study is to know the amount of current and voltage produced by solar panels in some conditions of the sky, namely cloudy, bright cloudy, and bright. The research method used was the experiment. From the data that has been obtained, it can be found that the energy produced by solar panels during cloudy ranges from 0.6-0.8 amperes, when it is cloudy, 0.9-1.9 amperes, and when bright 2.0-3.2 amperes. The amount of electrical energy that can be produced is 8%. However, if the sunny state can produce twice that Suggestions for readers are if you want to take data to make sure the solar panels are completely exposed to the sun during data collection and in the open area. Much better if the angle is adjusted in the direction of sunlight.


Author(s):  
Bekhruzi Talbi Shokhzoda ◽  
Mikhail Georgievich Tyagunov

Looking at the history of solar energy and renewable energy in general, the authorities and scientists have been paying much attention to the recent period, due to the depletion of fossil energy resources and the growing difficulties in solving environmental problems. The development of solar energy has led to the use of solar energy concentrators. Concentrators are used to concentrate sunlight onto PV cells. This allows for a reduction in the cell area required for producing a given amount of power. The goal is to significantly reduce the cost of electricity generated by replacing expensive PV converter area with less expensive optical material. In this chapter, the authors talk about concentrators in solar energy, especially about modules based on holographic films. Holographic solar panels (HSP) in recent decades have appeared in large-scale production and been actively used in solar energy. Evaluations of other types of existing concentrators are presented.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Nader Nader ◽  
Wael Al-Kouz ◽  
Sameer Al-Dahidi

There is no denial that renewable energy is considered to be the most cost-competitive source of clean power in many parts of the world. Saudi Arabia’s vision 2030 aims at achieving the best by using different sources of renewable energy such as solar energy, wind energy, and others. The use of solar energy in particular for power generation will decrease the dependency on oil, and thus, decrease the greenhouse gasses. Solar panels efficiency tends to decrease with the accumulation of dust on their surface. Thus, a cleaning process requires assigning and employing labor, which increases the cost of running as well as high cost of machinery. The current study focuses on assessing and designing a simple auto self-cleaning system in order to improve the efficiency of the solar panel. The results showed that for the Al-Khobar region, Eastern Province, Kingdom of Saudi Arabia, the efficiency of the solar panels after cleaning was increased from 6% to an average of 12% at nominal temperature of 27 °C. In addition, the average power output was increased by 35% during the day time. In addition, the normal efficiency of the solar panels before cooling was between 10% to 15% at 42 °C. After cooling, the temperature of solar cells decreased to 20 °C and the efficiency increased by 7%. Moreover, the output power was increased by 31% with maximum efficiency of 32% at noon time.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Tae-Yong Park ◽  
Joo-Yong Jung ◽  
Hyun-Ung Oh

Cube satellites have a limitation for generating power because of their cubic structure and extremely small size. In addition, the incidence angle between the sun and the solar panels continuously varies owing to the revolution and rotation of the satellite according to the attitude control strategy. This angle is an important parameter for determining the power generation performance of the cube satellite. In this study, we performed an experimental feasibility study that uses a Fresnel lens as a solar-energy collection system for cube satellite applications, so that the power generation efficiency can be enhanced under the worst incidence angle condition between the sun and solar panels by concentrating and redirecting solar energy onto the solar panels with a commercial Fresnel lens. To verify the effectiveness of the proposed system, we conducted a power-measurement test using a solar simulator and Fresnel lenses at various angles to the light source. In addition, we predicted the on-orbit power-generation enhancement achieved by employing the solar-energy collection system with various attitude control strategies.


2019 ◽  
Vol 11 (23) ◽  
pp. 6802 ◽  
Author(s):  
Adel Alblawi ◽  
M. H. Elkholy ◽  
M. Talaat

Solar energy is considered the greatest source of renewable energy. In this paper, a case study was performed for a single-axis solar tracking model to analyze the performance of the solar panels in an office building under varying ambient temperatures and solar radiation over the course of one year (2018). This case study was performed in an office building at the College of Engineering at Shaqra University, Dawadmi, Saudi Arabia. The office building was supplied with electricity for a full year by the designed solar energy system. The study was conducted across the four seasons of the studied year to analyze the performance of a group of solar panels with the total capacity of a 4 kW DC system. The solar radiation, temperature, output DC power, and consumed AC power of the system were measured using wireless sensor networks (for temperature and irradiance measurement) and a signal acquisition system for each hour throughout the whole day. A single-axis solar tracker was designed for each panel (16 solar panels were used) using two light-dependent resistors (LDR) as detecting light sensors, one servo motor, an Arduino Uno, and a 250 W solar panel installed with an array tilt angle of 21°. Finally, an artificial neural network (ANN) was utilized to estimate energy consumption, according to the dataset of AC load power consumption for each month and the measurement values of the temperature and irradiance. The relative error between the measured and estimated energy was calculated in order to assess the accuracy of the proposed ANN model and update the weights of the training network. The maximum absolute relative error of the proposed system did not exceed 2 × 10−4. After assessment of the proposed model, the ANN results showed that the average energy in the region of the case study from a 4 kW DC solar system for one year, considering environmental impact, was around 8431 kWh/year.


Sign in / Sign up

Export Citation Format

Share Document