scholarly journals Perturbation Method for Solar/Infrared Radiative Transfer in a Scattering Medium with Vertical Inhomogeneity in Internal Optical Properties

Author(s):  
Yi-Ning Shi ◽  
Feng Zhang ◽  
Jia-Ren Yan ◽  
Qiu-Run Yu ◽  
Jiangnan Li
2014 ◽  
Vol 7 (5) ◽  
pp. 2503-2516 ◽  
Author(s):  
K. Klingmüller ◽  
B. Steil ◽  
C. Brühl ◽  
H. Tost ◽  
J. Lelieveld

Abstract. The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components, such as absorbing black carbon and, predominantly scattering sulfates. Using a new column version of the aerosol optical properties and radiative-transfer code of the ECHAM/MESSy atmospheric-chemistry–climate model (EMAC), we study the radiative transfer applying various mixing states. The aerosol optics code builds on the AEROPT (AERosol OPTical properties) submodel, which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett mixing rule. We performed regional case studies considering columns over China, India and Africa, corroborating much stronger absorption by internal than external mixtures. Well-mixed aerosol is a good approximation for particles with a black-carbon core, whereas particles with black carbon at the surface absorb significantly less. Based on a model simulation for the year 2005, we calculate that the global aerosol direct radiative forcing for homogeneous internal mixing differs from that for external mixing by about 0.5 W m−2.


2010 ◽  
Vol 10 (8) ◽  
pp. 20673-20727
Author(s):  
M. R. Perrone ◽  
A. Bergamo ◽  
V. Bellantone

Abstract. The clear-sky, instantaneous Direct Radiative Effect (DRE) by all and anthropogenic particles is calculated during Sahara dust intrusions in the Mediterranean basin, to evaluate the role of anthropogenic particle's radiative effects and to obtain a better estimate of the DRE by desert dust. The clear-sky aerosol DRE is calculated by a two stream radiative transfer model in the solar (0.3–4 μm) and infrared (4–200 μm) spectral range, at the top of the atmosphere (ToA) and at the Earth's surface (sfc). Aerosol optical properties by AERONET sun-sky photometer measurements and aerosol vertical profiles by EARLINET lidar measurements, both performed at Lecce (40.33° N, 18.10° E) during Sahara dust intrusions occurred from 2003 to 2006 year, are used to perform radiative transfer simulations. Instantaneous values at 0.44 μm of the real (n) and imaginary (k) refractive index and of the of aerosol optical depth (AOD) vary within the 1.33–1.55, 0.0037–0.014, and 0.2–0.7 range, respectively during the analyzed dust outbreaks. Fine mode particles contribute from 34% to 85% to the AOD by all particles. The complex atmospheric chemistry of the Mediterranean basin that is also influenced by regional and long-range transported emissions from continental Europe and the dependence of dust optical properties on soil properties of source regions and transport pathways, are responsible for the high variability of n, k, and AOD values and of the fine mode particle contribution. Instantaneous all-wave (solar+infrared) DREs that are negative as a consequence of the cooling effect by aerosol particles, span the – (32–10) Wm−2 and the – (44–20) Wm−2 range at the ToA and surface, respectively. The instantaneous all-wave DRE by anthropogenic particles that is negative, varies within – (13–7) Wm−2 and – (18–11) Wm−2 at the ToA and surface, respectively. It represents from 41% up to 89% and from 32% up to 67% of the all-wave DRE by all particles at the ToA and surface, respectively during the analysed dust outbreaks. A linear relationship to calculate the DRE by natural particles in the solar and infrared spectral range is provided.


2020 ◽  
Author(s):  
Kirk Knobelspiesse ◽  
Amir Ibrahim ◽  
Bryan Franz ◽  
Sean Bailey ◽  
Robert Levy ◽  
...  

Abstract. Since early 2000, NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument has been performing remote sensing retrievals of aerosol optical properties from the polar orbiting Terra spacecraft. A noteworthy aspect of MISR observations over the ocean is that, for much of the Earth, some of the multi-angle views have contributions from solar reflection by the ocean surface (glint, or glitter), while others do not. Aerosol retrieval algorithms often discard these glint influenced observations because they can overwhelm the signal and are difficult to predict without knowledge of the (wind speed driven) ocean surface roughness. However, theoretical studies have shown that multi-angle observations of a location at geometries with and without reflected sun glint can be a rich source of information, sufficient to support simultaneous retrieval of both the aerosol state and the wind speed at the ocean surface. We are in the early stages of creating such an algorithm. In this manuscript, we describe our assessment of the appropriate level of parameterization for simultaneous aerosol and ocean surface property retrievals using sun glint. For this purpose, we use Generalized Nonlinear Retrieval Analysis (GENRA), an information content assessment (ICA) technique employing Bayesian inference, and simulations from the Ahmad-Fraser iterative radiative transfer code. We find that four parameters are suitable: aerosol optical depth (τ), particle size distribution (expressed as the fine mode fraction f of small particles in a bimodal size distribution), surface wind speed (w), and relative humidity (r, to define the aerosol water content and complex refractive index). None of these parameters define ocean optical properties, as we found that the aerosol state could be retrieved with the nine MISR near-infrared views alone, where the ocean body is black in the open ocean. We also found that retrieval capability varies with observation geometry, and that as τ increases so does the ability to determine aerosol intensive optical properties (r and f, while it decreases for w). Increases in wind speed decrease the ability to determine the true value of that parameter, but have minimal impact on retrieval of aerosol properties. We explored the benefit of excluding the two most extreme MISR view angles for which radiative transfer with the plane parallel approximation is less certain, but found no advantage in doing so. Finally, the impact of treating wind speed as a scalar parameter, rather than as a two parameter directional wind, was tested. While the simpler scalar model does contribute to overall aerosol uncertainty, it is not sufficiently large to justify the addition of another dimension to parameter space. An algorithm designed upon these principles is in development. It will be used to perform an atmospheric correction with MISR for coincident ocean color (OC) observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, also on the NASA Terra spacecraft. Unlike MISR, MODIS is a single view angle instrument, but it has a more complete set of spectral channels ideal for determination of ocean optical properties. The atmospheric correction of MODIS OC data can therefore benefit from MISR aerosol retrievals. Furthermore, higher spatial resolution data from coincident MISR observations may also improve glint screening.


2019 ◽  
Vol 13 (8) ◽  
pp. 2169-2187 ◽  
Author(s):  
Francois Tuzet ◽  
Marie Dumont ◽  
Laurent Arnaud ◽  
Didier Voisin ◽  
Maxim Lamare ◽  
...  

Abstract. Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g−1 (r2=0.81) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black carbon). We also observe an enhancement of light absorption between 350 and 650 nm in the presence of liquid water in the snowpack, which is discussed but not fully elucidated. A single SIP acquisition lasts approximately 1 min and is hence much faster than collecting a profile of chemical measurements. With the recent advances in modelling LAP–snow interactions, our method could become an attractive alternative to estimate vertical profiles of LAP concentrations in snow.


2013 ◽  
Vol 70 (3) ◽  
pp. 794-808 ◽  
Author(s):  
Feng Zhang ◽  
Zhongping Shen ◽  
Jiangnan Li ◽  
Xiuji Zhou ◽  
Leiming Ma

Abstract Although single-layer solutions have been obtained for the δ-four-stream discrete ordinates method (DOM) in radiative transfer, a four-stream doubling–adding method (4DA) is lacking, which enables us to calculate the radiative transfer through a vertically inhomogeneous atmosphere with multiple layers. In this work, based on the Chandrasekhar invariance principle, an analytical method of δ-4DA is proposed. When applying δ-4DA to an idealized medium with specified optical properties, the reflection, transmission, and absorption are the same if the medium is treated as either a single layer or dividing it into multiple layers. This indicates that δ-4DA is able to solve the multilayer connection properly in a radiative transfer process. In addition, the δ-4DA method has been systematically compared with the δ-two-stream doubling–adding method (δ-2DA) in the solar spectrum. For a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of δ-4DA is superior to that of δ-2DA in most of cases, especially for the cloudy sky. The relative errors of δ-4DA are generally less than 1% in both the heating rate and flux, while the relative errors of δ-2DA can be as high as 6%.


2020 ◽  
Vol 12 (17) ◽  
pp. 2758
Author(s):  
Stuart Fox

The Ice Cloud Imager (ICI) will be launched on the next generation of EUMETSAT polar-orbiting weather satellites and make passive observations between 183 and 664 GHz which are sensitive to scattering from cloud ice. These observations have the potential to improve weather forecasts through direct assimilation using "all-sky" methods which have been successfully applied to microwave observations up to 200 GHz in current operational systems. This requires sufficiently accurate representations of cloud ice in both numerical weather prediction (NWP) and radiative transfer models. In this study, atmospheric fields from a high-resolution NWP model are used to drive radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS) and a recently released database of cloud ice optical properties. The simulations are evaluated using measurements between 89 and 874 GHz from five case studies of ice and mixed-phase clouds observed by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. The simulations are strongly sensitive to the assumed cloud ice optical properties, but by choosing an appropriate ice crystal model it is possible to simulate realistic brightness temperatures over the full range of sub-millimetre frequencies. This suggests that sub-millimetre observations have the potential to be assimilated into NWP models using the all-sky method.


Sign in / Sign up

Export Citation Format

Share Document