scholarly journals Koroch (Pongamia pinnata): A Promising Unexploited Resources for the Tropics and Subtropics

Author(s):  
Abul Kalam Mohammad Aminul Islam ◽  
Swapan Chakrabarty ◽  
Zahira Yaakob ◽  
Mohammad Ahiduzzaman ◽  
Abul Kalam Mohammad Mominul Islam

The demand of petroleum fuel is increasing day by day. To meet up the energy demand, people of developing countries like Bangladesh basically used energy from indigenous sources, which are reducing quickly. Hence, it should be emphasized to explore unconventional fuel to overwhelm the crisis of petroleum fuels. Koroch (Pongamia pinnata L. Pierre) is a quick-growing leguminous tree that has the ability to grow on marginal land. Higher oil yield as well as physicochemical properties increases the suitability of using Pongamia as a promising substitute for supplying feedstock of biofuel production. Besides biofuel production, P. pinnata has multipurpose uses as traditional medicine to animal feed, bio-pesticides, and bio-fertilizers. A better understanding and knowledge on the ecological distribution, botanical characteristics, physiology, and mode of reproduction along with physicochemical properties, and biosynthesis of oil is essential for sustainable production of biofuel from P. pinnata. In this chapter, we discuss overall biological and physicochemical properties as well as cultivation and propagation methods that provide a fundamentals for exploiting and improving of P. pinnata as a promising renewable source of biofuel feedstock.

Author(s):  
Budi Leksono ◽  
Syed Rahman ◽  
Deki Purbaya ◽  
Yusuf Samsudin ◽  
Soo Lee ◽  
...  

Indonesia has a large area of degraded land, i.e. 30 million ha, which could potentially be utilized for biofuel plantations. The leguminous tree pongamia (Pongamia pinnata syn. Milettia pinnata) could be utilized to produce biofuel while restoring degraded land. Here, we explore the potential of pongamia as a source of biofuel and for restoring degraded land in Indonesia. Pongamia occurs across Indonesia, in Sumatra, Java, Bali, West Nusa Tenggara and Maluku. It grows to a height of 15–20 m and can grow in a range of environmental conditions. Its seeds can generate up to 40% crude oil by weight. It can help to restore degraded land and improve soil properties. Pongamia also provides wood, fodder, medicine, fertilizer and biogas. Therefore, as a multipurpose species, pongamia holds great potential to combat Indonesia’s energy crisis and to restore much of the degraded land.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2282
Author(s):  
Sanjeet Mehariya ◽  
Rahul Kumar Goswami ◽  
Pradeep Verma ◽  
Roberto Lavecchia ◽  
Antonio Zuorro

The increasing world population generates huge amounts of wastewater as well as large energy demand. Additionally, fossil fuel’s combustion for energy production causes the emission of greenhouse gases (GHG) and other pollutants. Therefore, there is a strong need to find alternative green approaches for wastewater treatment and energy production. Microalgae biorefineries could represent an effective strategy to mitigate the above problems. Microalgae biorefineries are a sustainable alternative to conventional wastewater treatment processes, as they potentially allow wastewater to be treated at lower costs and with lower energy consumption. Furthermore, they provide an effective means to recover valuable compounds for biofuel production or other applications. This review focuses on the current scenario and future prospects of microalgae biorefineries aimed at combining wastewater treatment with biofuel production. First, the different microalgal cultivation systems are examined, and their main characteristics and limitations are discussed. Then, the technologies available for converting the biomass produced during wastewater treatment into biofuel are critically analyzed. Finally, current challenges and research directions for biofuel production and wastewater treatment through this approach are outlined.


2021 ◽  
Vol 10 ◽  
Author(s):  
Folasade M. Olajuyigbe ◽  
Ademola K. Oduwole ◽  
Cornelius O. Fatokun

Background: Lignin confers rigidity on plant cell wall and poses a challenge to hydrolysis of cellulose, which makes production of biofuels from lignocellulose an overwhelming problem. This prompts continuous search for novel ligninolytic enzymes, especially, laccases for delignification of lignocellulose for improved saccharification of biomass. Objective: This study reports production, physicochemical properties and delignification efficiency of laccases from Penicillium and Trichoderma species on untreated wheat bran. Methods: Fungal laccases were produced using different agroresidues (wheat bran, coconut shell and palm kernel shell) as substrates in submerged fermentation. Best substrate for laccase production was determined. Physicochemical properties of crude enzymes and delignification efficiency of the laccases were determined on untreated wheat bran using pure laccase as control. Results: Wheat bran supported maximum laccase production from fungi under study. Highest laccase yield of 22.5 U/mL was obtained from P. spinulosum. Laccase from P. spinulosum was optimally active at pH 7.0 and 50 °C and exhibited remarkable high thermostability with 61.6% residual activity at 90 °C after 2 h incubation. The activity of the thermostable enzyme was enhanced in the presence of Cu2+. Biodelignification efficiency of cell-free extract from P. spinulosum, T. koningii, and P. restrictum on wheat bran were 95%, 81.5% and 63.5%, respectively. Surprisingly, a much lower delignification efficiency of 33.42% was obtained with commercial laccase from Trametes versicolor. Conclusion: The high thermostability and striking delignification efficiency of laccase from P. spinulosum make the enzyme a good bioresource for biodelignification of untreated lignocellulose for biofuel production.


2021 ◽  
Author(s):  
Augustyna Dobosz

Over the last decade, a rise in energy demand and diminishing fuel resources have created a challenge for finding an alternative solution that could supplement our current energy sources. This study demonstrated that ethanol and other useful end-products can be produced from the fermentative activity of microbial consortia derived from cellulose-rich waste environments. Compost and wastewater were used as inoculum sources to enrich cellulolytic cultures at incubation temperatures 50 ºC and 60ºC. A chemically defined medium was used without complex nutrients such as yeast extract. Four cellulolytic cultures were obtained and their end-products were monitored over an active cellulose degrading period. The compost culture incubated at 50ºC produced the highest concentration of butyrate while the wastewater-derived culture incubated at 60ºC produced the highest ethanol concentration. Optimization of DNA extraction and purification from complex environmental samples such as the compost and wastewater cultures used in this study was also discussed.


Author(s):  
Masni A. Majid ◽  
◽  
Aina Syafawati Roslan ◽  
Noor Azlina Abdul Hamid ◽  
Norhafizah Salleh ◽  
...  

Energy was the important sources to human life. Due to increases energy demand in daily life, the energy consumption was increase day by day because of the heat load from solar radiation and heat produced by people. Toward sustainable development, this research was carried out to develop a lightweight concrete (LWC) block with various cooling agent such as glycerine, propylene glycol, coconut shell and gypsum powder. Six lightweight concrete (LWC) block with the size 250mm (L) × 250mm (W) × 100mm (T) were tested for thermal conductivity value. From the experimental result, it shows that lightweight concrete (LCW) block with various cooling agent obtained thermal conductivity value of 0.17W/mK - 0.36W/mK lower than thermal conductivity value for normal lightweight concrete (0.8W/mK) depending on concrete density. The lightweight concrete (LCW) block with cooling agent having low thermal conductivity value will reduce energy consumption in building.


2020 ◽  
Author(s):  
Sajadul Alam Saimon ◽  
Rakibul Ahasan

Renewable energy is of great importance for today’s world which is generally produced from natural sources. Countries like Bangladesh has to use this energy to meet their energy demand. Day by day the demand of electricity is increasing in stormy pace but our resource is limited. So using renewable resources i.e. solar power to meet the demand of electricity is highly necessary especially rural and remote areas. This paper examined the nature and extent of solar energy in Boyarjapha village of Paikgachha Upazila of Khulna district to analyse the effects of solar panel in their daily life. Many positive impacts of solar power were found out such as better quality lighting, education, entertainment, communications, business, increasing working hours, women empowerment, increasing awareness etc. There are a few bad effects of solar energy too. But Government intervention is a must to ensure better quality results in coming future. Similarly, government has to take serious steps to advertise solar electricity in remote areas of Bangladesh


2018 ◽  
Vol 7 (4.35) ◽  
pp. 254
Author(s):  
Waraporn Rattanongphisat ◽  
Anantachai Suwannakom

The air conditioned auditorium classroom was monitored for energy consumption by a monitoring platform. One year collected data from energy consumption and indoor climate monitoring systems and outdoor climate data in Phitsanulok province, Thailand, where its climate classified as the tropics, was employed to determine their relation by regression analysis. The analysis of climate data showed that the outdoor temperature above 26 oC was accounted for 70% of the year this emphasizes on cooling requirement. Furthermore, the hourly cooling energy consumption ranged from 8.1 to 10.3 kWh for indoor air temperature between 20 oC and 32 oC.  The higher outdoor temperature causes the greater cooling energy consumption. The correlation between outdoor temperature and cooling energy consumption with linear regression showed the correlation coefficient of 0.38 while the correlation between temperature difference and enthalpy difference of the outdoor and indoor found the correlation coefficient of 0.71. This pointed out that the outdoor tropical climate highly affected to the cooling energy demand.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 594 ◽  
Author(s):  
Nils Borchard ◽  
Medha Bulusu ◽  
Ann-Michelle Hartwig ◽  
Matthias Ulrich ◽  
Soo Lee ◽  
...  

Bioenergy can produce at least 25% of the global energy demand to combat climate change through reducing emissions in the energy sector. However, information on the bioenergy production potential of woody species and their suitability for silviculture on various soils in the humid tropics is limited. This review aims to identify tree species suitable for bioenergy production under these conditions. Data were compiled from 241 publications and nine freely available databases to assess environmental and silvicultural information on tropical tree species. Energy outputs were derived from the estimated productivity of the reviewed species and ranged from 0.2 to 24.0 Mg biomass ha−1 yr−1, 0.1 to 9.0 Mg bio-oil ha−1 yr−1, and 0.2 to 20.0 Mg sugar ha−1 yr−1, equivalent to an energy yield between 2 and 444 GJ ha−1 yr−1. As such, these bioenergy yields are within the range reported for the lignocellulosic biomass of energy crops cultivated in Europe, the USA, and Brazil. Our review identified some high-yielding species (e.g., Dyera polyphylla (Miq.) Steenis, Metroxylon sagu (Rottb.), Pongamia pinnata (L.)) and leguminous species that could be beneficial in mixed stands (e.g., Elaeis oleifera (Kunth) and Pongamia pinnata) or are suitable species to grow on wet or re-wetted peatland (Dyera polyphylla). However, there are limitations to cultivate woody bioenergy species on wet peatland. Sustainable methods for managing and harvesting forests, particularly on wet or re-wetted peatland, need to be developed.


Sign in / Sign up

Export Citation Format

Share Document