scholarly journals Occurrence and Impact of Heavy Metals on Some Water, Land, Flora and Fauna Resources across Southwestern Nigeria

2021 ◽  
Author(s):  
Olufemi Akinnifesi ◽  
Femi Adesina ◽  
Germaine Ogunwole ◽  
Sylvanus Abiya

Rapid urbanization and industrialization in communities of Nigeria contribute significantly to environmental pollution. Amongst the diversity of these environmental contaminants are heavy metals, a rarely biodegradable and toxic class of metals. Heavy metals are known to be harmful to plants, aquatic species, and subsequently endanger human health through bioaccumulation or biomagnification. Even at low concentrations, heavy metals may affect key soil microbial processes; inhibit plant metabolism and growth. Toxic metals in groundwater affect water quality and potability, and their presence in aquatic systems also facilitate the production of reactive oxygen species that can damage physiological processes in fishes and other aquatic organisms. This chapter highlights the occurrence and impact of heavy metals in different environmental matrices and organisms sampled across some Southwestern states in Nigeria. Various studies including those of the authors found varying levels of heavy metals, especially in concentrations that can imperil ecosystem functions. While results of studies included in this chapter may suggest heavy metal introduction through anthropogenic-urbanization means, the lack of proper implementation of environmental monitoring laws in Nigeria also clearly exist. As such, the mitigation of heavy metals amongst other pollutants demands better home-grown decentralized technologies.

2016 ◽  
Vol 12 (24) ◽  
pp. 339 ◽  
Author(s):  
Jenyo-Oni A. ◽  
Oladele A. H.

Rapid urbanization and industrialization in developing countries have been associated with production and deposition of hazardous wastes in aquatic environments. Heavy metals are major components of these wastes which have been implicated in several metal-related diseases and food poisoning in man. This study evaluated iron, lead, cobalt, nickel, chromium and cadmium concentrations in water, sediment, Nile Tilapia (Oreochromis niloticus) and African river prawn (Macrobrachium vollenhovenii) samples of Lake Asejire, Oyo State, Nigeria. The concentration of these metals was determined spectrophotometrically in three locations along the course of the lake. Results revealed that only iron and lead were detected in water samples. However, all the metals were found in sediments, Nile Tilapia and African river prawn. Iron had the highest mean concentrations (mg kg-1) of 2.392±0.015, 7.4314±1.184, and 1.6100±0.099 in sediments, fish and prawn respectively. Significant differences was found across each sample type for the metals determined. The detection of these metals in Lake Asejire call for close environmental monitoring and adequate public awareness. This is necessary to discourage further pollution which could lead to high metal concentration and metal poisoning.


2020 ◽  
Vol 213 ◽  
pp. 01032
Author(s):  
Zhaohong Meng ◽  
Shuman Wang ◽  
Jia Zhou

Soil microbial environment have been affected by different concentration heavy metals Cd (HM) and tylosin (TYL) and combination of TYL and HM interactions. Degradation of TYL was caused certain inhibition due to the addition of HM. The germination index of seed had been inhibited owing to the toxic effects of HM and TYL, but we found that the low concentrations of HM (4 mg/kg), the germination index higher than the soil which unadded HM and TYL in it. The soil enzyme activity was significantly suppressed by the addition of HM and TYL. Actinomycete was inhibited by high concentrations of HM for a long time. The studies demonstrated that the pollution of the soil micro-environment has been serious than only add HM or TYL in the soil.


1982 ◽  
Vol 14 (12) ◽  
pp. 107-125 ◽  
Author(s):  
Roland Wollast

A comparison of the concentration of dissolved and of particulate heavy metals in the aquatic system indicates that these elements are strongly enriched in the suspended matter. The transfer between the aqueous phase and the solid phase may be due to dissolution-precipitation reactions, adsorption-desorption processes or biological processes. When these processes are identified, it is further possible to develop mathematical models which describe the behaviour of these elements. The enrichment of heavy metals in the particulate phase suspended or deposited and in aquatic organisms constitutes a powerful tool in order to evaluate sources of pollution.


2021 ◽  
Vol 777 ◽  
pp. 145976
Author(s):  
Can Wang ◽  
Abolfazl Masoudi ◽  
Min Wang ◽  
Jia Yang ◽  
Zhijun Yu ◽  
...  

2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


Author(s):  
Rong Guo ◽  
Tong Wu ◽  
Mengran Liu ◽  
Mengshi Huang ◽  
Luigi Stendardo ◽  
...  

Urban agglomerations have become a new geographical unit in China, breaking the administrative fortresses between cities, which means that the population and economic activities between cities will become more intensive in the future. Constructing and optimizing the ecological security pattern of urban agglomerations is important for promoting harmonious social-economic development and ecological protection. Using the Harbin-Changchun urban agglomeration as a case study, we have identified ecological sources based on the evaluation of ecosystem functions. Based on the resistance surface modified by nighttime light (NTL) data, the potential ecological corridors were identified using the least-cost path method, and key ecological corridors were extracted using the gravity model. By combining 15 ecological sources, 119 corridors, 3 buffer zones, and 77 ecological nodes, the ecological security pattern (ESP) was constructed. The main land-use types composed of ecological sources and corridors are forest land, cultivated land, grassland, and water areas. Some ecological sources are occupied by construction, while unused land has the potential for ecological development. The ecological corridors in the central region are distributed circularly and extend to southeast side in the form of tree branches with the Songhua River as the central axis. Finally, this study proposes an optimizing pattern with "four belts, four zones, one axis, nine corridors, ten clusters and multi-centers" to provide decision makers with spatial strategies with respect to the conflicts between urban development and ecological protection during rapid urbanization.


Sign in / Sign up

Export Citation Format

Share Document