scholarly journals Integration of Forward Osmosis in Municipal Wastewater Treatment Applications

2021 ◽  
Author(s):  
Stavroula Kappa ◽  
Simos Malamis

In recent years, the research community has made constant efforts to develop new technologies for the recovery and valorization of water, nutrient and energy content of municipal wastewater. However, the recovery process is significantly limited due to the low-strength of sewage. Over the last 10 years, the Forward Osmosis (FO) process, has gained interest as a low-cost process with low membrane fouling propensity, which can convert municipal wastewater into a concentrated low-volume effluent, characterized by high organic and nutrient concentration. This chapter presents the main configurations that have been implemented for the concentration of municipal wastewater using FO, including their performance in terms of contaminant removal and water/reverse salt flux (Jw/Js). Furthermore, the draw solutions and respective concentrations that have been used in FO for the treatment of sewage are reported, while at the same time the positive and negative characteristics of each application are evaluated. Finally, in the last section of this chapter, the spontaneous FO followed by anaerobic process is integrated in a municipal wastewater treatment plant (WWTP) and compared with a conventional one. The comparison is done, in terms of the mass balance of the chemical oxygen demand (COD) and in terms of the energy efficiency.

2018 ◽  
Vol 77 (11) ◽  
pp. 2613-2623 ◽  
Author(s):  
Kerstin Schopf ◽  
Johannes Judex ◽  
Bernhard Schmid ◽  
Thomas Kienberger

Abstract A municipal wastewater treatment plant accounts for a large portion of the total energy consumption of a municipality. Besides their high energy demand, the plants also display a significant bioenergy potential. This is due to the utilisation of the energy content of digester gas and sewage sludge if there exist suitable units. To maximise the energy recovery efficiency of wastewater treatment systems (WWTS), it is important to analyse the amount of digester gas and sludge produced in different types of plants. Therefore, the present paper deals with designing a tool to answer the following research questions: Which bioenergy potentials occur in different plant types? Which mass and energy flows are related to the specific potentials? Which utilisation processes for the potentials can lead to a high energy recovery efficiency of WWTS? Preliminary analyses with the designed tool were focused on estimating the level of electric and thermal energy self-sufficiency of different plant configuration scenarios including or excluding digester gas and/or sludge utilisation units. First results based on the level of self-sufficiency and associated energy and disposal costs show that a digester gas and sewage sludge utilisation should be considered when designing future WWTS.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2018 ◽  
Vol 77 (11) ◽  
pp. 2723-2732 ◽  
Author(s):  
Xiaowei Zheng ◽  
Shenyao Zhang ◽  
Jibiao Zhang ◽  
Deying Huang ◽  
Zheng Zheng

Abstract With the improvement of wastewater discharge standards, wastewater treatment plants (WWTPs) are continually undergoing technological improvements to meet the evolving standards. In this study, a quartz sand deep bed denitrification filter (DBDF) was used to purify WWTP secondary effluent, utilizing high nitrate nitrogen concentrations and a low C/N ratio. Results show that more than 90% of nitrate nitrogen (NO3-N) and 75% of chemical oxygen demand (COD) could be removed by the 20th day of filtration. When the filter layer depth was set to 1,600 mm and the additional carbon source CH3OH was maintained at 30 mg L−1 COD (20 mg L−1 methanol), the total nitrogen (TN) and COD concentrations of DBDF effluent were stabilized below 5 and 30 mg L−1, respectively. Analysis of fluorescence revealed that DBDF had a stronger effect on the removal of dissolved organic matter (DOM), especially of aromatic protein-like substances. High throughput sequencing and qPCR results indicate a distinctly stratified microbial distribution for the main functional species in DBDF, with quartz sand providing a good environment for microbes. The phyla Proteobacteria, Bacteroidetes, and Chloroflexi were found to be the dominant species in DBDF.


Author(s):  
Tong Yu ◽  
Chenlu Xu ◽  
Feng Chen ◽  
Haoshuai Yin ◽  
Hao Sun ◽  
...  

Abstract Microcoagulation has recently been considered as a promising pretreatment for an ultrafiltration (UF) process from numerous studies. To investigate the effects of microcoagulation on the performance of the UF–reverse osmosis (RO) system treating wastewater with high and fluctuant salinity, different dosages of coagulant (poly-aluminum chloride) were added prior to the UF unit in a pilot-scale UF–RO system for a 10-week period operation. Microcoagulation obviously improved the contaminant removal and cleaning efficiencies, including water backwash, chemical enhanced backwash and cleaning in place processes. Organic fouling was dominated during the initial stage of the RO membrane fouling. The microbial communities of water samples and foulant on the RO membrane were similar to those of seawater and foulant on the RO membranes from seawater RO plants. The microbial community of the foulant on the membrane was similar to that of UF permeate and RO concentrate. These results demonstrated that microcoagulation could improve the performance of the UF–RO system treating the effluent with high and fluctuant salinity from a coastal municipal wastewater treatment plant.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Carlos Carbonell-Alcaina ◽  
Jose Luis Soler-Cabezas ◽  
Amparo Bes-Piá ◽  
María Cinta Vincent-Vela ◽  
Jose Antonio Mendoza-Roca ◽  
...  

Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC.


2019 ◽  
Vol 5 (4) ◽  
pp. 684-692 ◽  
Author(s):  
Yan Sun ◽  
Shanshan Gao ◽  
Jiayu Tian ◽  
Xiujuan Hao ◽  
Zhiquan Liu ◽  
...  

Air bubbling along the membrane improves water flux, alleviates the deposition of foulants and inhibits the formation of a fouling layer.


2014 ◽  
Vol 69 (7) ◽  
pp. 1359-1372 ◽  
Author(s):  
Oskar Modin ◽  
David J. I. Gustavsson

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.


2017 ◽  
Vol 76 (12) ◽  
pp. 3299-3306
Author(s):  
M. Kaless ◽  
L. Palmowski ◽  
J. Pinnekamp

Abstract The energy content of screenings from six municipal wastewater treatment plants (WWTPs) was examined. Hourly samples of separated screenings were taken over 24 hours at three of the plants to illustrate diurnal variations. To recover the chemical energy, which usually leaves the WWTP with the screenings, a screenings wash press was used to transfer organic matter from the solid into the liquid phase. The chemical energy of raw and compacted washed screenings as well as the chemical energy of washing water were determined by measuring the chemical oxygen demand (COD) for the six WWTPs. A mass weighted average of 1.35 gCOD/gdm (dm: dry matter) was found in the raw screenings of three WWTPs. The overall recovered energy from screenings was found to range from 0.27 to 0.62 gCOD/gdm. This washed-out COD found in the washing water could be sent for anaerobic digestion or to the wastewater treatment process as a carbon source for denitrification.


2016 ◽  
Vol 104 ◽  
pp. 330-339 ◽  
Author(s):  
Yan Sun ◽  
Jiayu Tian ◽  
Zhiwei Zhao ◽  
Wenxin Shi ◽  
Dongmei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document