scholarly journals Noise Exposure

2021 ◽  
Author(s):  
Alberto Behar

Noise exposure is a basic concept used to assess the risk of noise induced hearing loss in the workplace. It is very important, since loud noise is omnipresent in almost all human activity, especially in industry, construction, mining and transportation. The question to answer is how to determine the risk of a person performing in an environment where the noise levels, duration and frequency content change with time. The answer is obtained by measuring his noise exposure. Although the measurement itself is not complex or difficult, a proper knowledge of what exactly is the noise exposure and how to deal with the measurement result in fundamental to avoid getting wrong conclusions.

2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Razali A ◽  
Othman MS ◽  
Rahman MS ◽  
Misaridin NFI

INTRODUCTION: Recreational noise exposure has become a major threat to the hearing system, and this includes exposure to loud noise during group exercises such as Zumba Fitness, where loud music plays an important role. This study aimed to assess the noise exposure and hearing threshold profile among Zumba Fitness regulars in Kuantan, Malaysia. MATERIALS AND METHODS: Noise exposure and hearing profile threshold were measured during Zumba Fitness sessions at a fitness studio in Kuantan, Malaysia from 24th June 2014 to 12th August 2014. Noise exposure was measured using a noise dosimeter for one hour of Zumba Fitness session with a total of nine sessions run by three different instructors while sound level pressure was taken using a sound level meter during ambient, peak session and during cooling down. Thirty participants answered questionnaires and underwent pure tone diagnostic audiometry test at a local clinic for hearing threshold documentation. RESULTS: Some areas of the hall posed higher risks of causing noise-induced hearing loss especially near the amplifiers. There were periods when the hearing level exceeded 115 dBA. Early abnormal pattern could be observed in the hearing profiles of some of the participants to suggest preliminary hearing problems. CONCLUSION: Zumba Fitness regulars have a risk of developing noise-induced hearing loss and preventive steps should be properly addressed as NIHL is permanent and irreversible.


2019 ◽  
pp. jramc-2018-001091 ◽  
Author(s):  
Assar Luha ◽  
E Merisalu ◽  
M Reinvee ◽  
S Kinnas ◽  
R Jõgeva ◽  
...  

IntroductionNoise-induced hearing loss is one of the most common health problems among military service personnel. Exposure to noise in military vehicles constitutes a large proportion of total noise exposure. This pilot study aimed to evaluate in-vehicle noise levels depending on the type of vehicle, riding compartment and road surface.MethodNoise levels were measured in armoured personnel carriers and heavy all-terrain trucks, in the cab and rear passenger compartment, while driving on paved or off-road surfaces. The results were compared with national LLV and allowed noise exposure times were calculated per vehicle and surface.ResultsThe equivalent noise levels in the cab of SISU XA-188 (p=0.001) and peak noise levels in MAN 4620 (p=0.0001) and DAF 4440 (p=0.0047) were higher on paved road, compared with off-road. The equivalent noise levels in the canvas covered rear compartment of MAN 4620 were significantly higher than in the cab on both paved (p=0.004) and off-road (p=0.0003). Peak noise levels in the cab of DAF 4440 exceeded the parameters measured in the canvas covered rear compartment on both paved (p=0.002) and off-road (p=0.0002). In most cases, peak noise levels were below the LLV (p=0.02–0.0001). The maximum noise exposure to passengers in the canvas covered rear compartment of MAN 4620 despite road surface was calculated 0.6 hours per working day.ConclusionA high risk of noise-induced hearing loss among military personnel occurs during long distance transportation with vehicles showing noise levels higher than allowed LLV.


Author(s):  
Tinh Thai ◽  
Petr Kučera ◽  
Ales Bernatik

Noise-Induced Hearing Loss (NIHL) is a global issue that is caused by many factors. The purpose of this study was to survey noise level to identify NIHL and its relationship with other factors in cement plants in Vietnam. Noise level was measured at one cement plant and three cement grinding stations located in the South of Vietnam. The audiometric data of exposed workers were surveyed to determine NIHL. Finally, the relationship between NIHL and noise level in cement plants was determined. The results show that noise level in almost all processes exceeded the permissible exposure limit (PEL). In this study, 42 cases (10% of exposed workers) with occupational NIHL were found with mean age (SD) of 49 (9.0) years. All NIHL cases were found in the departments in which the noise level exceeded the PEL, which included quarry (n = 16), maintenance (n = 12), production (n = 10), co-waste processing (n = 3) and quality assurance (n = 1). There was a positive and significant correlation between the NIHL and the excessive noise exposure in the cement plants (r = 0.89, p = 0.04).


Work ◽  
2021 ◽  
pp. 1-7
Author(s):  
Carina Moreno Dias Carneiro Muniz ◽  
Sergio Fernando Saraiva da Silva ◽  
Rachel Costa Façanha ◽  
Daniela Bassi-Dibai ◽  
Fabricio Brito Silva ◽  
...  

BACKGROUND: Musicians and dancers can be considered an at-risk population for developing noise-induced hearing loss. OBJECTIVES: To determine the audiological profile of members of a folklore-related music group and quantify noise exposure at their rehearsal venue. METHODS: This was a quantitative and descriptive study. The musicians and dancers were evaluated in two stages: an interview about their working life, followed by high frequency tonal audiometry. The sound pressure level in the group’s rehearsal venue was measured using a BEK 2270 Noise Analyzer. RESULTS: A total of 7.2% of the subjects had noise-induced hearing loss (NIHL) and 39% of the audiometric tests were notch type. During the interview 31.7% of the subjects mentioned discomfort from loud noise, although none of them used ear protection. The environmental assessment showed inadequate humidity and oscillating temperature. Twenty sound pressure level measurements were performed for Leq (equivalent sound pressure levels) and the results ranged from 88 dB (A) to 99 dB (A) with a mean of 97.05. CONCLUSIONS: Exposure to high levels of sound pressure has led to NIHL in some members of the group. Some of those with normal hearing also presented a notch configuration characteristic of NIHL. Tinnitus, indicating that a change in hearing has occurred, was the most frequent auditory symptom.


2016 ◽  
Vol 473 (24) ◽  
pp. 4665-4680 ◽  
Author(s):  
Julia M. Abitbol ◽  
John J. Kelly ◽  
Kevin Barr ◽  
Ashley L. Schormans ◽  
Dale W. Laird ◽  
...  

Hearing loss, including noise-induced hearing loss, is highly prevalent and severely hinders an individual's quality of life, yet many of the mechanisms that cause hearing loss are unknown. The pannexin (Panx) channel proteins, Panx1 and Panx3, are regionally expressed in many cell types along the auditory pathway, and mice lacking Panx1 in specific cells of the inner ear exhibit hearing loss, suggesting a vital role for Panxs in hearing. We proposed that Panx1 and/or Panx3 null mice would exhibit severe hearing loss and increased susceptibility to noise-induced hearing loss. Using the auditory brainstem response, we surprisingly found that Panx1−/− and Panx3−/− mice did not harbor hearing or cochlear nerve deficits. Furthermore, while Panx1−/− mice displayed no protection against loud noise-induced hearing loss, Panx3−/− mice exhibited enhanced 16- and 24-kHz hearing recovery 7 days after a loud noise exposure (NE; 12 kHz tone, 115 dB sound pressure level, 1 h). Interestingly, Cx26, Cx30, Cx43, and Panx2 were up-regulated in Panx3−/− mice compared with wild-type and/or Panx1−/− mice, and assessment of the auditory tract revealed morphological changes in the middle ear bones of Panx3−/− mice. It is unclear if these changes alone are sufficient to provide protection against loud noise-induced hearing loss. Contrary to what we expected, these data suggest that Panx1 and Panx3 are not essential for baseline hearing in mice tested, but the therapeutic targeting of Panx3 may prove protective against mid-high-frequency hearing loss caused by loud NE.


2019 ◽  
Vol 166 (E) ◽  
pp. e53-e56
Author(s):  
Richard Ramsey ◽  
J Greenough ◽  
J Breeze

IntroductionHealth professionals working in the dental environment are potentially at risk of noise-induced hearing loss (NIHL) due to the use of clinical and laboratory equipment. Workplaces engaging in the practice of dentistry within the UK are subject to legislation from the Control of Noise at Work (CNW) regulations 2005. Clinicians working in the military are at further increased risk of NIHL due to exposure from additional risk factors such as rifles or aircraft engines. To our knowledge, no authors have previously studied the noise levels experienced in a military dental setting or compared noise levels in a typical dental practice with current UK legislation.MethodMeasurements of noise levels experienced by a dentist, dental nurse and dental hygienist during a standard conservation procedure were assessed using wearable noise dose-badges. Furthermore, noise levels within a dental technician’s work space were also assessed. Noise levels produced by representative clinical and laboratory equipment were assessed and compared with CNW legislation.ResultsThe highest level for clinical equipment was produced by the suction apparatus while aspirating up a cup of water at 76 dB. For laboratory equipment, the lower exposure action value (LEAV) of 80 dB would be exceeded in 2.1 hours’ use of the trimmer, 3.6 hours’ use of the vibrating table and 9 min use of the airline.ConclusionsNoise levels experienced by clinicians within the dental surgery were well below the legislative LEAV thresholds for both peak and continuous noise. However, noise levels produced by laboratory equipment were far higher and there is clearly the potential for excessive noise exposure for dental professional in the everyday setting. Dental professionals responsible for dental laboratory settings must be familiar with the CNW regulations and measures put in place that control the inadvertent breach of legislation. Hearing protection must be mandated when using equipment that exceeds the LEAV and an educational programme is required to explain both their correct use and the rationale behind it. Methods of mitigating that risk further require exploration such as alternative methods of completing the tasks performed by the airline or reducing the noise generated by it, such as by reducing the supply pressure or using an alternative nozzle design.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


Author(s):  
David C. Byrne ◽  
Thais C. Morata

Exposure to industrial noise and the resulting effect of occupational hearing loss is a common problem in nearly all industries. This chapter describes industrial noise exposure, its assessment, and hearing disorders that result from overexposure to noise. Beginning with the properties of sound, noise-induced hearing loss and other effects of noise exposure are discussed. The impact of hearing disorders and the influence of other factors on hearing loss are described. Typically, noise-induced hearing loss develops slowly, and usually goes unnoticed until a significant impairment has occurred. Fortunately, occupational hearing loss is nearly always preventable. Therefore, this chapter gives particular attention to recommendations for measures to prevent occupational hearing loss such as engineering noise controls and hearing protection devices.


Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 443
Author(s):  
Hyunjun Woo ◽  
Min-Kyung Kim ◽  
Sohyeon Park ◽  
Seung-Hee Han ◽  
Hyeon-Cheol Shin ◽  
...  

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Sign in / Sign up

Export Citation Format

Share Document