scholarly journals Conventional and Contemporary Techniques for Removal of Heavy Metals from Soil

2021 ◽  
Author(s):  
Vaishali Arora ◽  
Babita Khosla

One of the most important components of the natural environment is soil. Soil is a non-renewable natural resources on which the whole human society is dependent for various goods and services. The intensive, and unsustainable anthropogenic practices along with the rapid growth of the human population have led to continuous expansion and concern for the degradation of soil. The agricultural soil is exposed to a plethora of contaminants, the most significant contaminant among them is heavy metals. The major sources of heavy metal contamination are associated with agriculture, industries, and mining. The increase of heavy metal contents in the soil system affects all organisms via biomagnification. In this chapter, we will review various conventional and contemporary physical or chemical and biological techniques for remediation of contaminated soil. The advanced solution for degraded soil is integrating innovative technologies that will provide profitable and sustainable land-use strategies.

Author(s):  
Harendra Kumar Sharma ◽  
Irfan Rashid Sofi ◽  
Khursheed Ahmad Wani

Heavy metal contamination in water is a serious concern to the environment and human health. High concentrations of heavy metals in the environment can be toxic to a variety of living species. Natural bio-absorbents are abundant and inexpensive and considered a waste if not managed properly. The role of bio-absorbents has been widely studied and has been utilized for the removal of heavy metals. The objective of the chapter is to search the database for different absorbents and their efficiency for the removal of heavy metals. Key words related to the study have been used to select different papers published by the researchers all over the world. A rigorous three-tier process has been utilized by the authors to select the papers from the database for the current study. This chapter has identified a few research gaps in the field of heavy metal removal by using different low cast absorbents that need to be taken into account in future research.


2018 ◽  
Vol 22 (03) ◽  
pp. 140-144
Author(s):  
Minjmaa B ◽  
Oyunchimeg T

The aim of the study was to determine the source for contents of heavy metals in soils of landfill sites in Ulaanbaatar. Samples were collected from ash of the burned waste near the landfill sites to identify content of heavy metals such as plumbum, chromium, cadmium, nickel and zinc. There are total of 300 mg/kg chromium and 700 mg/kg zinc identified from ash of burned electrical wire, 1000 mg/kg plumbum is identified from the ash of burned tires. According to the comparison of heavy metal contents in landfill sites, landfill of industrial waste has higher content rate of chromium and cadmium than other landfill sites. These open burnings and industrial waste have considerable influences on contaminated soil with heavy metals. This is not only a source for soil contamination but also a risk to air and water pollution or resident health. Therefore, it is indispensable to develop waste management for human health and environmental protection.


2018 ◽  
Vol 73 ◽  
pp. 06009
Author(s):  
Wardhani Eka ◽  
Notodarmojo Suprihanto ◽  
Roosmini Dwina

Saguling reservoir in West Java Province is becoming increasingly polluted by heavy metals. The purpose of this study was to determine the level of four heavy metals such as Cd, Cr, Cu, and Pb concentration at Saguling Reservoir at ’2 sampling location. Water samples were collected during rainy and summer 2008-2017 to determine the spatial distribution seasonal and temporal variation of different heavy metal contents. Mean metals concentrations in summer seasons were Cd, Cr, Cu, and Pb higher than rainy season. Mean concentration of Cd, Cu, Cr, and Pb in water samples were accordance water quality standard in both season. Heavy metal pollution that occurs in the Saguling reservoir must be monitored because this reservoir is planned to be a source of raw water for Bandung City.


1995 ◽  
Vol 22 (6) ◽  
pp. 1185-1197 ◽  
Author(s):  
Ting-Chien Chen ◽  
Edward Macauley ◽  
Andrew Hong

Heavy metal contamination of soil is a common problem at many hazardous waste sites. Chelating extraction of heavy metals has been proposed as a remediation technique for contaminated soils. A useful method was developed, which assessed 190 ligands for their ability in extraction and recovery of target metals, including cadmium, copper, lead, mercury, nickel, and zinc. Chelator performance was evaluated based on equilibrium calculations with an emphasis on the potential of recovering both the metals and chelating agents. Batch equilibration experiments over 24-h periods were performed to test three chelating agents, S-carboxymethyl-cysteine (SCMC), N-2-acetamidoiminodiacetic acid (ADA), and pyridine-2,6-dicarboxylic acid (PDA), which were deemed suitable for the extraction of cadmium, copper, lead, and zinc from soil. All three chelators demonstrated high extraction capability toward their respective target metals across a wide range of pH, metal, and ligand concentrations. In addition, all three chelators exhibited good recovery potential at moderately elevated pH values. The potential of many chelating agents and their effective pH ranges in the remediation of soils contaminated with heavy metals are reported. Key words: heavy metal, soil, contamination, chelation, remediation.


2016 ◽  
pp. 99-108 ◽  
Author(s):  
Danijela Arsenov ◽  
Natasa Nikolic ◽  
Milan Borisev ◽  
Milan Zupunski ◽  
Slobodanka Pajevic

are valuable source of vitamins, minerals and fibers important for healthy human nutrition. However, an increased level of heavy metals in vegetables has been noticed in recent years. This study was conducted with an aim to analyze content of heavy metals, cadmium (Cd), lead (Pb), and chromium (Cr) in 11 vegetable species which are the most common in human diet. Vegetables were collected from three green markets (Limanska, Futoska and Riblja pijaca) in Novi Sad, during September and October, from 2009 to 2011. Heavy metal contents were analyzed in edible parts of tomato, potato, spinach, onion, beetroot, parsley, parsnip, carrot, cauliflower, pepper and broccoli using atomic absorption spectrophotometer (Varian, AAS 240FS). The results showed statistically significant differences in element concentrations among analyzed vegetables. In general, the highest metal pollution was observed in the year of 2011. Spinach was found to contain the highest metals content - 0.89 ?g/g for Cd, 5.81 ?g/g for Pb, and 3.67 ?g/g for Cr. According to Serbian official regulations, 18.18% of all analyzed species exceeded maximum permissible level for Cd, 9.09% for Pb, while for Cr these limits are not defined. Elevated content of heavy metals in vegetables might be related to soil contamination, atmospheric depositions during transportation and marketing. Thus, a continuous monitoring of vegetables on markets should be performed in order to prevent potential health risks to consumers.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Qiuying Zhang ◽  
Futian Ren ◽  
Xiangyun Xiong ◽  
Hongjie Gao ◽  
Yudong Wang ◽  
...  

Abstract Background With the continuous advancement of global urbanisation, humans have begun to overutilise or improperly utilise the natural resources of bay areas, which has led to a series of ecological and environmental problems. To evaluate the spatial distributions and potential ecological risks of heavy metals in sediments of Shenzhen Bay, China, an analysis of As, Cd, Cr, Cu, Pb, and Zn regarding their content, correlation (Pearson coefficient), pollution degree, and potential ecological risks was conducted. Results The heavy metal contents in the sediments decreased in the order of Zn > Cu > Cr > Pb > As > Cd, with contents of 175.79 mg kg−1, 50.75 mg kg−1, 40.62 mg kg−1, 37.10 mg kg−1, 18.27 mg kg−1, and 0.20 mg kg−1, respectively. The results showed that the overall sediment quality in Shenzhen Bay generally met the China Marine Sediment Quality criteria, and the heavy metal contents were significantly lower than those reported in the same type of bay area worldwide. Furthermore, the order of grade of potential ecological risk of the heavy metals was as follows: As and Cd were found to pose moderate ecological risks, with their potential hazard indices reaching a high level, whereas the potential ecological hazard indices of Cu, Pb, Zn, and Cr were all at relatively low levels. Conclusions The potential hazard indices of the heavy metals decreased from the inner bay toward the outside. The accumulation and content of the analysed heavy metals in the Shenzhen Bay sediments are mainly controlled by historical land-source pollution and land reclamation projects. This study presents the current state of sediment quality in Shenzhen Bay. The results may assist in the definition of future bay area management measures specifically targeted at monitoring heavy metal contamination.


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Elijah Abakpa Adegbe ◽  
Oluwaseyi Oluwabukola Babajide ◽  
Lois Riyo Maina ◽  
Shola Elijah Adeniji

Abstract Background Heavy metal accumulation in the ecosystem constitutes a potential toxic effect which is hazardous to human health. Increasing environmental pollution has necessitated the use of cattle egrets to evaluate the levels of heavy metal contamination, to establish their use in biomonitoring of heavy metals and to provide data for monitoring pollution in the environment. Results The present study assessed the utilization of Bubulcus ibis in monitoring pollution in five abattoirs, namely Agege, Bariga, Kara, Itire and Idi-Araba, all situated in Lagos State. The concentration of five (5) heavy metals, cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) was determined in the liver, muscle and feather of Bubulcus ibis using the atomic absorption spectrophotometer. The trend of metal accumulation was in the order: Zn > Cu > Pb > Cd > Ni for all the sampled tissues. The mean tissue concentrations of the metals were significantly different (p < 0.05) among the sites. The highest levels of metal concentration were reported in the liver in all the locations. Mean concentration of Cd in Kara (0.003 ± 0.00058) was significantly (p < 0.05) higher than those found at Agege (0.0013 ± 0.00058) and Idi-Araba (0.001 ± 0.001). A significant difference (p < 0.05) was also observed between the mean concentrations of Cu in Bariga (0.01 ± 0.001) and Idi-Araba (0.003 ± 0.001). Conclusion All the studied heavy metals were present in the liver, muscle and feathers of the cattle egrets. The contamination levels were ascertained from the study which indicated that cattle egrets are useful in biomonitoring studies and the generated data will serve as baseline data which could be compared with data from other locations for monitoring heavy metal pollution.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1310
Author(s):  
Matúš Várady ◽  
Sylwester Ślusarczyk ◽  
Jana Boržíkova ◽  
Katarína Hanková ◽  
Michaela Vieriková ◽  
...  

The aim of this study was to determine the effect of roasting on the contents of polyphenols (PPH), acrylamide (AA), and caffeine (CAF) and to analyze heavy metals in specialty coffee beans from Colombia (COL) and Nicaragua (NIC). Samples of NIC were naturally processed and COL was fermented anaerobically. Green beans from COL (COL-GR) and NIC (NIC-GR) were roasted at two levels, light roasting (COL-LIGHT and NIC-LIGHT) and darker roasting (COL-DARK and NIC-DARK), at final temperatures of 210 °C (10 min) and 215 °C (12 min), respectively. Quantitative analyses of PPH identified caffeoylquinic acids (CQA), feruloylquinic acids, and dicaffeoylquinic acids. Isomer 5-CQA was present at the highest levels and reached 60.8 and 57.7% in COL-GR and NIC-GR, 23.4 and 29.3% in COL-LIGHT and NIC-LIGHT, and 18 and 24.2% in COL-DARK and NIC-DARK, respectively, of the total PPH. The total PPH contents were highest in COL-GR (59.76 mg/g dry matter, DM). Roasting affected the contents of PPH, CAF, and AA (p < 0.001, p < 0.011 and p < 0.001, respectively). Nickel and cadmium contents were significantly higher in the COL-GR than in the NIC-GR beans. Darker roasting decreased AA content, but light roasting maintained similar amounts of CAF and total PPH.


Sign in / Sign up

Export Citation Format

Share Document