scholarly journals Current Scenario of Breeding Approaches in Rice

2021 ◽  
Author(s):  
Suhel Mehandi ◽  
Anita Yadav ◽  
Ramanuj Maurya ◽  
Sudhakar Prasad Mishra ◽  
Syed Mohd. Quatadah ◽  
...  

Rice is the predominant crop in India and is the staple food in eastern and southern Indian populations. One of the oldest grown crops is rice. The initial discovery of cytoplasmic male sterile (CMS) three-line system made it possible to produce hybrids that significantly increase rice yields compared to its inbred counterparts. Further genetic and molecular studies help elucidate the mechanisms involved in CMS male sterility. Additional CMS types were also discovered with similar genetic control from wild sources by interspecific hybridization. In India more than 1200 varieties were released for cultivation suitable different ecosystems and out of them 128 varieties have been contributed from NRRI, Cuttack. A list of these varieties are furnished below with their duration, grain type, yield potential, reaction to major disease and insects grain quality and tolerance to different adverse situations. Recent advances in molecular approaches used in modern rice breeding include molecular marker technology and marker-assisted selection (MAS); molecular mapping of genes and QTLs and production of hybrids and alien introgression lines (AILs). Genomic selection (GS) has been projected as alternative to conventional MAS. GS has huge potential to enhance breeding efficiency by increasing gain per selection per unit time. Due to the adaptation of semi dwarf high yielding varieties, combined with intensive input management practices, the country witnessed an impressive rice production growth in the post-independent period. Rice production was increased four times, productivity three times while the area increase was only one and half times during this period. The projected rice requirement by 2025, in order to keep up with increasing population, is about 130 m.t. The challenge of growing rice production is made more difficult by declining trends in HYV’s yields, decreasing and degrading natural resources such as land and water and a severe labour shortage.

Author(s):  
Reiner Wassmann

Assessing the environmental footprints of modern agriculture requires a balanced approach that sets the obviously negative effects (e.g., incidents with excessive use of inputs) against benefits stemming from increased resource use efficiencies. In the case of rice production, the regular flooding of fields comprises a distinctive feature, as compared to other crops, which directly or indirectly affects diverse impacts on the environment. In the regional context of Southeast Asia, rice production is characterized by dynamic changes in terms of crop management practices, so that environmental footprints can only be assessed from time-dependent developments rather than from a static view. The key for the Green Revolution in rice was the introduction of high-yielding varieties in combination with a sufficient water and nutrient supply as well as pest management. More recently, mechanization has evolved as a major trend in modern rice production. Mechanization has diverse environmental impacts and may also be instrumental in tackling the most drastic pollution source from rice production, namely, open field burning of straw. As modernization of rice production is imperative for future food supplies, there is scope for developing sustainable and high-yielding rice production systems by capitalizing on the positive aspects of modernization from a local to a global scale.


2021 ◽  
Vol 306 ◽  
pp. 01045
Author(s):  
Muhammad Alwi Mustaha ◽  
Cipto Nugroho ◽  
Samrin ◽  
Dian Rahmawati

In order to increase national rice production, the Ministry of Agriculture has released some high yielding varieties. The research was aimed to obtain superior rice varieties adapted to irrigated lowland agro-ecosystems of Southeast Sulawesi. In the first planting season, research was carried out in Olo-oloho Village, Uepai sub district and the second season at the Wawotobi Experimental Garden. Eight varieties were tested, i.e. Inpari 31, Inpari 34, Inpari 35, Inpari 38, Inpari 39, Inpari 41, Inpari 42, Inpari 43 and Mekongga. The variables observed were growth, yield and pest and disease dynamics. The results shows that there was variation growth and yield of the tested varieties. The growth and yield also varied depend on the season. In the first planting season, Inpari 34 and Inpari 43 showed better growth than others, but Inpari 31 resulted the highest rice yield (4.83 t/ha). In the second planting season, only Inpari 34 showed consistent growth, but the variety that had showed the highest yield was Inpari 43 (8.13 t/ha).


2019 ◽  
Vol 56 (Special) ◽  
pp. 82-91 ◽  
Author(s):  
LV Subba Rao ◽  
RA Fiyaz ◽  
AK Jukanti ◽  
G Padmavathi ◽  
J Badri ◽  
...  

India is the second largest producer of rice in the world and it is the most important staple food grain. All India Coordinated Rice Improvement Project (AICRIP) was initiated with objective of conducting multi-location trials to identify suitable genotypes of high yield potential along with appropriate crop management practices. Since its inception AICRIP contributed significantly in meeting the growing demand both within and outside India. Significant progress has been achieved through AICRIP in terms of varietal release thereby increasing the crop productivity and also meeting the food and nutritional security. This paper makes a sincere effort in bringing out the significant achievements/milestones achieved under the AICRIP program and also gives a few directions for widening the areas under AICRIP.


2009 ◽  
Vol 35 (6) ◽  
pp. 1151-1155
Author(s):  
Ming-Guang CHU ◽  
Shuang-Cheng LI ◽  
Shi-Quan WANG ◽  
Qi-Ming DENG ◽  
Jing ZHANG ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 777
Author(s):  
Erythrina Erythrina ◽  
Arif Anshori ◽  
Charles Y. Bora ◽  
Dina O. Dewi ◽  
Martina S. Lestari ◽  
...  

In this study, we aimed to improve rice farmers’ productivity and profitability in rainfed lowlands through appropriate crop and nutrient management by closing the rice yield gap during the dry season in the rainfed lowlands of Indonesia. The Integrated Crop Management package, involving recommended practices (RP) from the Indonesian Agency for Agricultural Research and Development (IAARD), were compared to the farmers’ current practices at ten farmer-participatory demonstration plots across ten provinces of Indonesia in 2019. The farmers’ practices (FP) usually involved using old varieties in their remaining land and following their existing fertilizer management methods. The results indicate that improved varieties and nutrient best management practices in rice production, along with water reservoir infrastructure and information access, contribute to increasing the productivity and profitability of rice farming. The mean rice yield increased significantly with RP compared with FP by 1.9 t ha–1 (ranges between 1.476 to 2.344 t ha–1), and net returns increased, after deducting the cost of fertilizers and machinery used for irrigation supplements, by USD 656 ha–1 (ranges between USD 266.1 to 867.9 ha–1) per crop cycle. This represents an exploitable yield gap of 37%. Disaggregated by the wet climate of western Indonesia and eastern Indonesia’s dry climate, the RP increased rice productivity by 1.8 and 2.0 t ha–1, with an additional net return gain per cycle of USD 600 and 712 ha–1, respectively. These results suggest that there is considerable potential to increase the rice production output from lowland rainfed rice systems by increasing cropping intensity and productivity. Here, we lay out the potential for site-specific variety and nutrient management with appropriate crop and supplemental irrigation as an ICM package, reducing the yield gap and increasing farmers’ yield and income during the dry season in Indonesia’s rainfed-prone areas.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Shahjahan Ali ◽  
Bikash Chandra Ghosh ◽  
Ataul Gani Osmani ◽  
Elias Hossain ◽  
Csaba Fogarassy

A lack of adaptive capacities for climate change prevents poor farmers from diversifying agricultural production in Bangladesh’s drought-resilient areas. Climate change adaptation strategies can reduce the production risk relating to unforeseen climatic shocks and increase farmers’ food, income, and livelihood security. This paper investigates rice farmers’ adaptive capacities to adapt climate change strategies to reduce the rice production risk. The study collected 400 farm-level micro-data of rice farmers with the direct cooperation of Rajshahi District. The survey was conducted during periods between June and July of 2020. Rice farmers’ adaptive capacities were estimated quantitatively by categorizing the farmers as high, moderate, and low level adapters to climate change adaptation strategies. In this study, a Cobb–Douglas production function was used to measure the effects of farmers’ adaptive capacities on rice production. The obtained results show that farmers are moderately adaptive in terms of adaptation strategies on climate change and the degree of adaptation capacities. Agronomic practices such as the quantity of fertilizer used, the amount of labor, the farm’s size, and extension contacts have a substantial impact on rice production. This study recommends that a farmer more significantly adjusts to adaptation strategies on climate change to reduce rice production. These strategies will help farmers to reduce the risk and produce higher quality rice. Consequently, rice farmers should facilitate better extension services and change the present agronomic practice to attain a higher adaptation status. It can be very clearly seen that low adaptability results in lower rice yields.


2007 ◽  
Vol 145 (3) ◽  
pp. 223-227 ◽  
Author(s):  
M. P. REYNOLDS ◽  
P. R. HOBBS ◽  
H. J. BRAUN

Wheat is grown on 210 million ha throughout the world producing approximately 600 million tonnes of grain (10 year average; FAO 2005) and providing on average one fifth of the total calorific input of the world's population (FAO 2003). For some regions such as North Africa, Turkey and Central Asia, wheat provides half of total dietary energy intake. Of the cultivated wheat area, half is located in less developed countries where there have been steady increases in productivity since the green revolution, associated with genetic improvements in yield potential, resistance to diseases and adaptation to abiotic stresses (Reynolds & Borlaug 2006a, b) as well as better agronomic practices (Derpsch 2005). Nonetheless, challenges to wheat production are still considerable, especially in the developing world, not only because of increased demand but also because of the increased scarcity of water resources (Rosegrant 1997; WMO 1997), ever more unpredictable climates (Fischer et al. 2002), increased urbanization and loss of good quality land away from agriculture (Hobbs 2007), and decreased public sector investment in agriculture and rural affairs (Falcon & Naylor 2005). To meet demand in a sustainable way, more resources are required to breed a new generation of genetically improved cultivars as well as implement resource-conserving agronomic management practices.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Cailong Xu ◽  
Ruidong Li ◽  
Wenwen Song ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Increasing planting density is one of the key management practices to enhance soybean yield. A 2-yr field experiment was conducted in 2018 and 2019 including six planting densities and two soybean cultivars to determine the effects of planting density on branch number and yield, and analyze the contribution of branches to yield. The yield of ZZXA12938 was 4389 kg ha−1, which was significantly higher than that of ZH13 (+22.4%). In combination with planting year and cultivar, the soybean yield increased significantly by 16.2%, 31.4%, 41.4%, and 46.7% for every increase in density of 45,000 plants ha−1. Yield will not increase when planting density exceeds 315,000 plants ha−1. A correlation analysis showed that pod number per plant increased with the increased branch number, while pod number per unit area decreased; thus, soybean yield decreased. With the increase of branch number, the branch contribution to yield increased first, and then plateaued. ZH13 could produce a high yield under a lower planting density due to more branches, while ZZXA12938 had a higher yield potential under a higher planting density due to the smaller branch number and higher tolerance to close planting. Therefore, seed yield can be increased by selecting cultivars with a little branching capacity under moderately close planting.


2019 ◽  
Vol 11 (21) ◽  
pp. 6004 ◽  
Author(s):  
Clement Tisdell ◽  
Mohammad Alauddin ◽  
Md. Abdur Rashid Sarker ◽  
Md Anwarul Kabir

Many scientists have expressed concern that declining agricultural diversity threatens agricultural sustainability. We draw on the available literature to outline and examine mechanisms that reduce agricultural diversity and identify the at-risk attributes of agricultural sustainability. Using a three-pillar concept embodying ecological, social and economic dimensions, this article provides a comprehensive general assessment of the sustainability of agricultural systems. It pays particular attention to consequences for agricultural diversity and sustainability of the increasing dependence of agriculture on the market system and new agricultural technologies. As an illustrative example, it examines changes in the diversity and sustainability of Bangladeshi agriculture by applying a novel index of the diversity of cropping land use, an output decomposition method, and statistical techniques. Crop diversity in Bangladesh is very low and dominated by the cultivation of rice, which now depends very heavily on a limited number of high yielding varieties (HYVs). Higher rice yields in Bangladesh and seasonal changes in rice cultivation have resulted in land sparing, which make room for greater crop diversity. Nevertheless, Bangladesh’s food dependence on its rice output is very high and is critically dependent on groundwater irrigation. We recommend that Bangladesh consider increasing the diversity of its crops as a food security measure and as a hedge against a decline in its agricultural sustainability.


Agric ◽  
2021 ◽  
Vol 33 (1) ◽  
pp. 57-66
Author(s):  
Kiki Kusyaeri Hamdani ◽  
Yati Haryati

New superior varieties (VUB) are a reliable technological innovation to increase rice productivity. This study aims to determine the yield potential of some lowland rice VUB. The assessment was carried out on land owned by a member of the Sumber Rejeki Farmer Group, Cintaratu Village, Lakbok District, Ciamis Regency at Dry Season II in June-September 2020. The study used a randomized complete block design (RCBD) with six varieties of treatment and was repeated ten times. The varieties tested were Inpari 32, Inpari 42, Padjadjaran, Cakrabuana, Inpari IR Nutrizinc, and Siliwangi varieties. The variables observed included the growth component, yield component, and yield component. Data were analyzed using the F test followedby the Duncan Multiple Range Test at the Q=5% level. In addition, a correlation test was conducted between the growth components, yield components, and yields. The results of the study indicated that the new superior rice varieties studied had different performance in growth, number of tillers, yield, and yield components. Inpari 42 variety produced the highest productivity, namely 6.88 ton ha-1 which was supported by the number of grains per panicle, percentage of filled grains per panicle, and percentage of empty grain per panicle which were better than other varieties. Plant height and number of grains per panicle were positively correlated with yield.


Sign in / Sign up

Export Citation Format

Share Document