scholarly journals Determinants of Laplacians on discretizations of flat surfaces and analytic torsion

2020 ◽  
Vol 358 (6) ◽  
pp. 743-751
Author(s):  
Siarhei Finski
Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


Author(s):  
Lee H. Veneklasen

This paper discusses some of the unique aspects of a spectroscopic emission microscope now being tested in Clausthal. The instrument is designed for the direct parallel imaging of both elastic and inelastic electrons from flat surfaces. Elastic contrast modes of the familiar LEEM include large and small angle LEED, mirror microscopy, backscatter diffraction contrast (for imaging of surface structure), and phase contrast (for imaging of step dynamics)(1). Inelastic modes include topology sensitive secondary, and work function sensitive photoemission. Most important, the new instrument will also allow analytical imaging using characteristic Auger or soft X-ray emissions. The basic instrument has been described by Bauer and Telieps (2). This configuration has been redesigned to include an airlock, and a LaB6 gun, triple condensor lens, magnetic objective lens, a double focussing separator field, an imaging energy analyzer, and a real time image processor.Fig. 1 shows the new configuration. The basic beam voltage supply Vo = 20 KV, upon which separate supplies for the gun Vg, specimen Vs, lens electrode Vf, and analyzer bias Vb float. The incident energy at the sample can be varied from Vs = 0-1 KV for elastic imaging, or from Vg + Vs = (3 + Vs) KV for inelastic imaging. The image energy window Vs±V/2 may be varied without readjusting either the illumation, or imaging/analyzer optics. The diagram shows conjugate diffraction and image planes. The apertures defining incoming Humiliation and outgoing image angles are placed below the separator magnet to allow for their independent optimization. The instrument can illuminate and image 0.5-100 μm fields at 0-1 keV emission energies with an energy window down to 0.2 eV.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2020 ◽  
Author(s):  
Julia Villalva ◽  
Belén Nieto-Ortega ◽  
Manuel Melle-Franco ◽  
Emilio Pérez

The motion of molecular fragments in close contact with atomically flat surfaces is still not fully understood. Does a more favourable interaction imply a larger barrier towards motion even if there are no obvious minima? Here, we use mechanically interlocked rotaxane-type derivatives of SWNTs (MINTs) featuring four different types of macrocycles with significantly different affinities for the SWNT thread as models to study this problem. Using molecular dynamics, we find that there is no direct correlation between the interaction energy of the macrocycle with the SWNT and its ability to move along or around it. Density functional tight-binding calculations reveal small (<2.5 Kcal·mol-1) activation barriers, the height of which correlates with the commensurability of the aromatic moieties in the macrocycle with the SWNT. Our results show that macrocycles in MINTs rotate and translate freely around and along SWNTs at room temperature, with an energetic cost lower than the rotation around the C−C bond in ethane.<br>


2020 ◽  
pp. 42-47
Author(s):  
SERGIY RYZHKOV

Fractonal efciency of aerosol collecton in the boundary layers at diferent inital speeds of disperse multphase fow along a fat surface with the jet stream is determined.


Author(s):  
Mikhail Khovanov ◽  
You Qi ◽  
Lev Rozansky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document