scholarly journals Biological Evaluation of Endophytic Fungus Chaetomium sp. NF15 of Justicia adhatoda L.: A Potential Candidate for Drug Discovery

2016 ◽  
Vol Inpress (Inpress) ◽  
Author(s):  
Nighat Fatima ◽  
Usman Mukhtar ◽  
Ihsan-Ul-Haq ◽  
Muneer Ahmed Qazi ◽  
Muniba Jadoon ◽  
...  
2020 ◽  
Vol 16 ◽  
Author(s):  
Tran Khac Vu ◽  
Nguyen Thi Thanh ◽  
Nguyen Van Minh ◽  
Nguyen Huong Linh ◽  
Nguyen Thi Phương Thao ◽  
...  

Background: Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. Aims: This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. Method: A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin-4(3H)- ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structure-activity. relationships. Results: It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 µM, and HDAC inhibition with IC50 value of 6.36 µM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. Conclusion: The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2084
Author(s):  
Mingkun Li ◽  
Heping Li ◽  
Hongli Liu ◽  
Zhiming Zou ◽  
Chaoyu Xie

The development of natural biomass materials with excellent properties is an attractive way to improve the application range of natural polysaccharides. Bagasse Xylan (BX) is a natural polysaccharide with various biological activities, such as antitumor, antioxidant, etc. Its physic-chemical and biological properties can be improved by functionalization. For this purpose, a novel glycidyl metharcylate/phytic acid based on a BX composite derivative was synthesized by a free radical polymerization technique with glycidyl metharcylate (GMA; GMABX) and further esterification with phytic acid (PA; GMABX-PA) in ionic liquid. The effects of the reaction conditions (i.e., temperature, time, initiator concentration, catalyst concentration, GMA concentration, PA concentration, mass of ionic liquid) on grafting rate(G), conversion rate(C) and degree of substitution(DS) are discussed. The structure of the composite material structure was confirmed by FTIR, 1H NMR and XRD. SEM confirmed the particle morphology of the composite derivative. The thermal stability of GMABX-PA was determined by TG-DTG. Molecular docking was further performed to study the combination mode of the GMABX-PA into the active site of two lung cancer proteins (5XNV, 2EB2) and a blood cancer protein (2M6N). In addition, tumor cell proliferation inhibition assays for BX, GMABX-PA were carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetraz -olium bromide (MTT) method. The results showed that various reaction conditions exhibited favorable gradient curves, and that a maximum G of 56% for the graft copolymerization and a maximum DS of 0.267 can be achieved. The thermal stability was significantly improved, as demonstrated by the fact that there was still 60% residual at 800 °C. The molecular docking software generated satisfactory results with regard to the evaluated binding energy and combining sites. The inhibition ratio of GMABX-PA on NCI-H460 (lung cancer cells) reached 29.68% ± 4.45%, which is five times higher than that of BX. Therefore, the material was shown to be a potential candidate for biomedical applications as well as for use as a heat resistant material.


RSC Advances ◽  
2020 ◽  
Vol 10 (50) ◽  
pp. 30223-30237
Author(s):  
Prasanta Das ◽  
Sarah Boone ◽  
Dipanwita Mitra ◽  
Lindsay Turner ◽  
Ritesh Tandon ◽  
...  

The synthetic efficacy and biological relevance extend an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Sandra Duffy ◽  
Melissa L. Sykes ◽  
Amy J. Jones ◽  
Todd B. Shelper ◽  
Moana Simpson ◽  
...  

ABSTRACT Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro. Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.


2016 ◽  
Author(s):  
Serena Dotolo ◽  
Angelo Facchiano

Drug discovery is a step-by-step process very important in biopharmaceutical field. We are interested in identifying new investigational drug-likes as potential inhibitors of determinate biological-therapeutic targets, trying to decrease the side effects and to safeguard the human health. However, it is a long and very expensive process. Therefore, we are using a new computational strategy, based on Pharmacophore modeling, to select bioactive substances (natural or synthetic), through the integration of bioinformatics online tools and local resource and platforms, in order to include into the strategy also knowledge from high-throughput studies, for new potential lead compounds generation-optimization, trying to accelerate the early phase of the drug development process. The protocol of this new computational strategy is characterized by a multi-step design focused on: 1) screening in RCSB-PDB for a crystal structure of a specific biological target, suitable for the following steps; 2) pharmacophore modeling and virtual computational screening, by using public domain databases of bioactive compounds, as the ZINC12 database [5], in order to find a promising molecule that could become a new potential medicine. 3) molecular and biological evaluation, to check the compounds selected by virtual screening, for their biological properties through public databases, as PubChem Compound, SciFinder, and Chemicalize to trace their origin and underline their most important physical-chemical features, PathPred (an enzyme-catalyzed metabolic pathway predictor server) to highlight and identify their biosynthetic-metabolic pathways and investigating the biotransformation of best candidates, analyzing their metabolites and their potential biological activity. Moreover, ADMET/toxicity predictor server applying the Lipinski-Veber filter are used to calculate the bioavailability the ADMET/toxicity properties. After this check, only molecules with good bioavailability, good predicted activity and good ADMET properties are considered as hits compounds or drug-likes to direct the design of next experimental assays [6]. Finally, the lead compounds selected are analyzed through molecular dynamics simulations. 4) simulations of molecular dynamics on the best lead compounds, to investigate atomic details of protein-compound molecular interactions in different conditions (different organic solutions, organisms and systems). REFERENCES [1] Dubey A, Facchiano A, Ramteke PW, Marabotti A. “In silico approach to find chymase inhibitors among biogenic compounds.” Future Med Chem. 2016; 8(8):841-51 [2] Dubey A, Marabotti A, Ramteke PW, Facchiano A. "Interaction of human chymase with ginkgolides, terpene trilactones of Ginkgo biloba investigated by molecular docking simulations.” Biochem Biophys Res Commun. 2016; 473(2):449-54. [3] Katara P. “Role of bioinformatics and pharmacogenomics in drug discovery and development process”. Netw Model Anal Health Inform Bioinforma 2013; 2: 225-230. [4] Sunseri J. and Koes D. R. “Pharmit: Interactive Exploration of Chemical Space”.Nucl. Acids Res. 2016; 44(W1): W442-448. [5] Irwin J.J. and Shoichet B.K. “ZINC- A free database of Commercially Available Compounds for Virtual Screening”. J.Chem.Inf.Model. 2005; 45: 177-182. [6] Kaserer T., Beck K. R., Akram M., Odermatt A., Schuster D. “Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Application Exemplified on Hydroxysteroid Dehydrogenases”.Molecules 2015; 20: 22799–22832.


2018 ◽  
Vol 4 (1) ◽  
pp. 123-130 ◽  
Author(s):  
S. Labbaf ◽  
A. Baharlou Houreh ◽  
M. Rahimi ◽  
Hung-Kai Ting ◽  
Jr. Jones ◽  
...  

Abstract The study reports the fabrication and in vitro biological evaluation of a sol-gel derived bioactive glass (BG) / polycaprolactone (PCL) composite fiber membrane, as a potential candidate for bone regeneration applications. The non woven composite mats were prepared by introducing the glass particles into the electrospinning process. Adding the glass improved the homogeneity of the fibers. The apatite forming ability of the membranes in simulated body fluid were evaluated and showed that hydroxyapatite had formed within 21 days in SBF and completely covered the surface of the membrane. In cell culture, dental pulp stem cells adhered proliferated and produced mineralized matrix on the PCL/BG fiber membrane.


Sign in / Sign up

Export Citation Format

Share Document