scholarly journals Species composition, plant cover and diversity of recently reforested wild lands near Dabao Highway in Longitudinal Range-Gorge Region of Yunnan Province, China

2007 ◽  
Vol 6 (24) ◽  
pp. 2810-2820 ◽  
Author(s):  
Dong ◽  
K S ◽  
Cui ◽  
S B ◽  
Yang ◽  
...  
2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. A. Louw ◽  
N. S. Haussmann ◽  
P. C. le Roux

AbstractThe impacts of ecosystem engineers may be expected to vary along environmental gradients. Due to some resources being more limited in arid than in mesic environments, disturbances created by burrowing mammals are expected to have a greater ameliorating effect in arid environments, with larger differences in microhabitat conditions expected between burrows and undisturbed areas. The aim of this study was to test if the impacts of a medium-sized burrowing mammal, the aardvark, on soil properties (soil temperature, moisture and compaction) and vegetation characteristics (plant cover, species richness and species composition) are consistent across three biomes that differ strongly in annual rainfall. Burrowing affected soil and vegetation attributes, but the direction and magnitude of these biogeomorphological impacts were not consistent across the different biomes. For example, plant species composition was altered by burrowing in the arid scrubland and in the mesic grassland, but not in the semi-arid savannah. Contrary to expectations, the difference in the impacts of burrowing between biomes were not related to rainfall, with burrowing having strong, albeit different, impacts in both the arid scrubland and the mesic grassland, but weaker effects in the semi-arid savannah. It appears, therefore, that the impacts of these biogeomorphic agents may be site-specific and that it may be difficult to predict variation in their biotic and abiotic effects across environmental gradients. As a result, forecasting the impacts of ecosystem engineers under different conditions remains a challenge to management, restoration and conservation strategies related to these types of species.


2011 ◽  
Vol 59 (4) ◽  
pp. 369 ◽  
Author(s):  
Suzanne M. Prober ◽  
Rachel J. Standish ◽  
Georg Wiehl

Emerging ecological theory predicts that vegetation changes caused by introduction of livestock grazing may be irreversible after livestock are removed, especially in regions such as Australia that have a short evolutionary exposure to ungulate grazing. Despite this, fencing to exclude livestock grazing is the major tool used to restore vegetation in Australian agricultural landscapes. To characterise site-scale benefits and limitations of livestock exclusion for enhancing biodiversity in forb-rich York gum (Eucalyptus loxophleba Benth. subsp. loxophleba)–jam (Acacia acuminata Benth.) woodlands, we compared 29 fenced woodlands with 29 adjacent grazed woodlands and 11 little-grazed ‘benchmark’ woodlands in the Western Australian wheatbelt. We explored the following two hypotheses: (1) fencing to exclude livestock facilitates recovery of grazed woodlands towards benchmark conditions, and (2) without additional interventions after fencing, complete recovery of grazed woodlands to benchmark conditions is constrained by ecological or other limits. Our first hypothesis was supported for vegetation parameters, with fenced woodlands being more similar to benchmark woodlands in tree recruitment, exotic plant cover, native plant cover, native plant richness and plant species composition than were grazed woodlands. Further, exotic cover decreased and frequency of jam increased with time-since-fencing (2–22 years). However, we found no evidence that fencing led to decline in topsoil nutrient concentrations towards concentrations at benchmark sites. Our second hypothesis was also supported, with higher topsoil nutrient concentrations and exotic plant cover, and lower native plant richness in fenced than in benchmark woodlands, and different plant species composition between fenced and benchmark woodlands. Regression analyses suggested that recovery of native species richness is constrained by exotic species that persist after fencing, which in turn are more persistent at higher topsoil nutrient concentrations. We conclude that fencing to exclude livestock grazing can be valuable for biodiversity conservation. However, consistent with ecological theory, additional interventions are likely to be necessary to achieve some conservation goals or to promote recovery at nutrient-enriched sites.


Web Ecology ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Laura Concostrina-Zubiri ◽  
Juan M. Arenas ◽  
Isabel Martínez ◽  
Adrián Escudero

Abstract. Understanding patterns of habitat natural recovery after human-made disturbances is critical for the conservation of ecosystems under high environmental stress, such as drylands. In particular, the unassisted establishment of nonvascular plants such as biological soil crusts or biocrust communities (e.g., soil lichens, mosses and cyanobacteria) in newly formed habitats is not yet fully understood. However, the potential of biocrusts to improve soil structure and function at the early stages of succession and promote ecosystem recovery is enormous. In this study, we evaluated the capacity of lichen biocrusts to spontaneously establish and develop on road slopes in a Mediterranean shrubland. We also compared taxonomic and functional diversity of biocrusts between road slopes and natural habitats in the surroundings. Biocrust richness and cover, species composition, and functional structure were measured in 17 road slopes (nine roadcuts and eight embankments) along a 13 km highway stretch. Topography, soil properties and vascular plant communities of road slopes were also characterized. We used Kruskal–Wallis tests and applied redundancy analysis (RDA) to test the effect of environmental scenario (road slopes vs. natural habitat) and other local factors on biocrust features. We found that biocrusts were common in road slopes after ∼20 years of construction with no human assistance needed. However, species richness and cover were still lower than in natural remnants. Also, functional structure was quite similar between roadcuts (i.e., after soil excavation) and natural remnants, and topography and soil properties influenced species composition while environmental scenario type and vascular plant cover did not. These findings further support the idea of biocrusts as promising restoration tools in drylands and confirm the critical role of edaphic factors in biocrust establishment and development in land-use change scenarios.


2014 ◽  
Vol 21 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Monika Mętrak ◽  
Paweł Pawlikowski ◽  
Małgorzata Suska-Malawska

Abstract Small, astatic ponds are important features of post-glacial landscape, which support heterogeneity and biodiversity of agricultural areas. In the presented research we explored differences in hydrochemistry and plant cover of 20 small ponds located in Northeastern Poland, characterized by diverse age and developed in differently managed areas. According to our research, though changes in water level are under direct influence of water balance in the catchment, to which belonged the ponds, their hydrochemistry seemed to be shaped by processes at the level lower than the catchment scale. Age of the ponds appeared to be an important factor influencing density and species composition of vegetation developed on the studied ponds.


2021 ◽  
Author(s):  
Elie Ntirenganya ◽  
Li Yajin ◽  
Xie Yanlan ◽  
Zhou Yanli ◽  
Zhang Hongrui

Thysanoptera is one of the most predominant order of insects in different ecological zones with worldwide distribution. Due to their small size there is a big gap in their distribution and host range data. To the best of our knowledge there is no investigation on thrips distribu+tion and host range in Xishuangbanna. Currently, a total 566 species in 155 genera are listed in China, of which 313 species represent Terebrantia.  In this study, a list of 115 species representing 54 genera within 2 families (Aeolothripidae & Thripidae) is provided.Two of these, Dichromomothrips nakahari Moud, 1976 (Subfamily: Thripinae) and Phibalothrips rugosus Kudo, 1979 (Subfamily: Panchaetothripinae) are newly recorded in China. Thrips species with their host ranges, habits, and habitats are provided. Our study will contribute to the global biodiversity distribution data-gap of Thysanoptera.


2016 ◽  
Vol 27 (4) ◽  
pp. 7-11
Author(s):  
Magdalena Malec ◽  
Sławomir Klatka ◽  
Marek Ryczek ◽  
Edyta Kruk

Abstract The main purpose of the work was to determine the scope and degree of the influence of exploitation on changes of plant cover of the raised peat-bog Baligówka, located in the Orawsko- Nowotarska Valley. The analysis was carried out based on 47 phytosociological surveys using the Braun-Blanquet method. Results of investigations allow to state that excessive drying and fires that took place on the examined object caused wastage of many precious species of plants, especially from the Oxycocco- Sphagnetea class. Their place occupied species belonging to other classes, such as Nardo-Callunetea and Molinio-Arrhenatheretea. The basic cause of drying of the peat-bog and, in consequence, dying of peat formation species is intensified exploitation and connected with this drainage, carried out in the half of the 20th century. Unfortunately, local people up to now illegally have harvested the peat on the investigated object. Decrease in groundwater level leads to accelerated decay of peat, changes in physical and chemical properties of a substratum and, in consequence, changes in trophic values of habitat, what causes great changes in species composition of plant communities.


2011 ◽  
Vol 40 (2) ◽  
pp. 175-196
Author(s):  
ERIK JONES ◽  
THERESA MILLER ◽  
JEREMY MONSMA ◽  
JILLIAN PUSZYKOWSKI ◽  
JOANNE WESTPHAL

ABSTRACT This paper describes plant species composition and coverage changes that occurred on an extensive (shallow) green roof system exposed to direct solar exposure and steep roof conditions over time. The green roof system, installed in August, 2005, involved a pre-seeded, manufactured mat product that initially was vegetated with twelve plant species. During the interim between installation and data collection for this paper, no maintenance, fertilizer, or irrigation was applied, despite the fact that observable differences in plant coverage were noted. In April, 2009, undergraduate student researchers revisited the green roof system and examined the green roof for species composition and absolute plant cover. These data were compared to a control area where solar incidence and slope were comparable to the conditions found on a flat roof system. This paper reports on the findings of this study, and offers insight to the types of modifications in extensive green roof technology that may be necessary if extensive green roof application is to be useful for steep roof conditions in cold climate environments.


1970 ◽  
Vol 176 (1043) ◽  
pp. 131-159 ◽  

A study on the relative distributions of Cepaea nemoralis (L.), C. hortensis (Müll) and Arianta arbustorum (L,), has been made in three areas on the Carboniferous Limestone of Derbyshire, the Wye valley, Matlock and Dovedale. Samples were made by collecting these species at a large number of sites in different habitats, and also by transects through selected areas. In all the areas studied, the proportion of A. arbustorum in the samples increases with in­creasing plant cover, and is greater on north- than on south-facing slopes. A . arbustorum is commonest, and occupies the widest range of habitats, in the western parts of the Wye valley, which has heavy rainfall. It becomes rarer and more restricted in drier areas farther east. Varia­tions in humidity rather than temperature appear to be the main factor affecting the distribu­tion of this species relative to Cepaea , with A.arbustorum preferring the wetter habitats. Other studies on distribution, survival and behaviour tend to support this conclusion. The proportion of C. nemoralis in Cepaea tends to increase with decreasing plant cover in all areas, but there are important exceptions. Short rough herbage has less C. nemoralis than would be expected from the plant cover, and open woodland has more. These two habitats, with the highest heterogeneity of plant cover within sampling sites, also have the highest proportion of samples containing both species of Cepaea , while the most uniform habitats have the least. This, and other differences of distribution between the three areas, suggest that some of the differences in the distributions of C. nemoralis and C. hortensis are due to competition between them. Although aspect and rainfall have little effect on species composition in Cepaea, C. hortensis predominates in wetter habitats, suggesting that humidity is also an important factor affecting distribution. The transects show that changes in species composition with habitat and aspect occur over short distances.


Sign in / Sign up

Export Citation Format

Share Document