scholarly journals Impact of industrial effluents, domestic wastewater and natural dams on heavy metals concentrations in vegetables cultivated in Northern Nigeria

2020 ◽  
Vol 12 (1) ◽  
pp. 1-7
Author(s):  
Bernard Emmanuel ◽  
M. Ayandeji Olayiwola
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Obulisamy Parthiba Karthikeyan ◽  
Thomas J. Smith ◽  
Shamsudeen Umar Dandare ◽  
Kamaludeen Sara Parwin ◽  
Heetasmin Singh ◽  
...  

AbstractManufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs.


2013 ◽  
Vol 5 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Pawan K. Bharti ◽  
Pawan Kumar ◽  
Vijender Singh

The present paper is aimed towards the assessment of heavy metal contamination of agricultural soil due to irrigation with contaminated ground water affected by textile industrial effluents at Panipat city in India. Samples of ground water and irrigated soils from textile industrial area were analyzed for various heavy metals, viz. Mn, Ni, Fe, Cu, Cd, Pb and Zn, using Atomic Absorption Spectrophotometry. Metal transfer factors from ground water to irrigated agricultural soil and from soil to ground water were calculated for heavy metals. The findings deal with the distribution of heavy metals in ground water of industrial area and irrigated agricultural soil. Transfer factors for heavy metals from effluent to ground water were observed to be 0.436, 1.180, 6.461, 2.401, 2.790, 3.178 and 0.634 for Cd, Cu, Fe, Mn, Ni, Pb and Zn respectively. These were found to be very high from ground water to agriculture soil due to the natural shale value of heavy metals in soil system. Thus, untreated industrial effluents can cause an environmental threat to ground water resources and affects soil quality and agricultural plant productivity.


2019 ◽  
Vol 16 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Pragya Goyal ◽  
Pranoti Belapurkar ◽  
Anand Kar

Microbial assisted remediation is the ray of hope in the current scenario of tremendous heavy metal pollution. The indiscriminate release of heavy metal laden industrial effluents in the water bodies and soil is now manifesting itself in the form of life threatening health hazards to humans. The conventional heavy metal remediation strategies are not only expensive but are ineffective in low metal concentrations. Microbial assisted remediation of heavy metals has come forward as the cheap and easy alternative. Amongst the various bacterial genera actively involved in bioremediation of cadmium and nickel in the environment, genus Bacillus has shown remarkable ability in this respect owing to its various biochemical and genetic pathways. It can perform bioremediation using multiple mechanisms including biosorption and bioaccumulation. This genus has also been able to reduce toxicity caused by cadmium and nickel in eukaryotic cell lines and in mice, a property also found in probiotic genera like Lactobacillus and Bifidobacterium. This paper reviews the role of environmentally present and known probiotic species of genus Bacillus along with different probiotic genera for their various mechanisms involved for remediation of cadmium and nickel.


2016 ◽  
Vol 35 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Moshood Keke Mustapha ◽  
Joy Chinenye Ewulum

AbstractHeavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP) remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.


2008 ◽  
Vol 7 (2) ◽  
pp. 244-248 ◽  
Author(s):  
U.A. Awode ◽  
A. Uzairu ◽  
M.L. Balarabe ◽  
G.F.S. Harrisson ◽  
O.J. Okunola

2018 ◽  
Vol 912 ◽  
pp. 202-206 ◽  
Author(s):  
Joseane Damasceno Mota ◽  
Rochélia Silva Souza Cunha ◽  
Patrícia Noemia Mota de Vasconcelos ◽  
Meiry Gláucia Freire Rodrigues

Heavy industrial activities result in contamination of waste water with many heavy metals, including cadmium, nickel, lead, mercury. Within this context becomes a growing concern of the population and environmental agencies regarding water contamination by heavy metals from industrial effluents. Because of this problem, this paper aims to study and evaluate the main properties of natural Brasgel clay in order to remove cadmium from synthetic effluents, analyzing its kinetic adsorption and its isothermal balance. Once clays exhibit good cation exchange capacity, selectivity and regenerability and for this reason has aroused interest in the use as an adsorbent. As finite bath testing we found that the Brasgel clay, removed approximately 90% of cadmium. The Langmuir model presented best fit to the experimental data, adequately describing the dynamics of adsorption. Kinetic tests indicated that the cadmium removal process by natural Brasgel clay apply the mechanism of the pseudo-second-order rate model, a time of 20 minutes and required to reach equilibrium. Thus, the results indicated that Brasgel clay can be used as an adsorbent for the removal of cadmium from contaminated effluent.


Our Nature ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 249-257 ◽  
Author(s):  
M Gadhia ◽  
R Surana ◽  
E Ansari

Present study was carried out to determine the important physico chemical parameters of water of Tapi estuary in Hazira industrial area. Tapi estuary receives the inputs of organic matter and nutrients coming from the domestic wastewater discharges from Surat City, a textile hub as well as industrial effluents from Hazira, a major industrial Complex of Gujarat, India. Uncontrolled discharges of domestic wastes and industrial effluents have affected the estuary. Present study was carried out from June - 2011 to May 2012 to study the impacts of uncontrolled discharges on physicochemical characteristics of water. Samples were collected monthly in the morning during low tide to determine the important physico chemical parameters Viz. Turbidity, conductivity, total solid, total dissolved solid, salinity, pH, dissolved oxygen, BOD, COD, Calcium, chloride, sodium , potassium and nutrients like nitrate, nitrite and phosphate. Dissolved oxygen was found extremely low during the study period. High biochemical oxygen demand (BOD) and Chemical Oxygen demand (COD) showed that the water quality of estuary has been affected by industrial and domestic effluents. DOI: http://dx.doi.org/10.3126/on.v10i1.7811


Sign in / Sign up

Export Citation Format

Share Document