scholarly journals Metal(loid) speciation and transformation by aerobic methanotrophs

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Obulisamy Parthiba Karthikeyan ◽  
Thomas J. Smith ◽  
Shamsudeen Umar Dandare ◽  
Kamaludeen Sara Parwin ◽  
Heetasmin Singh ◽  
...  

AbstractManufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs.

Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2013 ◽  
Vol 5 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Pawan K. Bharti ◽  
Pawan Kumar ◽  
Vijender Singh

The present paper is aimed towards the assessment of heavy metal contamination of agricultural soil due to irrigation with contaminated ground water affected by textile industrial effluents at Panipat city in India. Samples of ground water and irrigated soils from textile industrial area were analyzed for various heavy metals, viz. Mn, Ni, Fe, Cu, Cd, Pb and Zn, using Atomic Absorption Spectrophotometry. Metal transfer factors from ground water to irrigated agricultural soil and from soil to ground water were calculated for heavy metals. The findings deal with the distribution of heavy metals in ground water of industrial area and irrigated agricultural soil. Transfer factors for heavy metals from effluent to ground water were observed to be 0.436, 1.180, 6.461, 2.401, 2.790, 3.178 and 0.634 for Cd, Cu, Fe, Mn, Ni, Pb and Zn respectively. These were found to be very high from ground water to agriculture soil due to the natural shale value of heavy metals in soil system. Thus, untreated industrial effluents can cause an environmental threat to ground water resources and affects soil quality and agricultural plant productivity.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2021 ◽  
Vol 90 (3) ◽  
pp. 277-286
Author(s):  
Ehdaa Eltayeb Eltigani Abdelsalam ◽  
Hana Banďouchová ◽  
Tomáš Heger ◽  
Miroslava Kaňová ◽  
Kateřina Kobelková ◽  
...  

Sertoli cells play a crucial role in male fertility through boosting and regulating the differentiation of spermatogonial stem cells into mature sperm during spermatogenesis. Female ovarian follicles are responsible for the production of mature ova and control of ovarian steroidogenesis. Disruption of these structures through exposure to environmental pollutants is critical for reproductive health. Here, we derived primary cell cultures of Sertoli cells and ovarian follicles from fallow deer (Dama dama). Cells were used as in vitro models to explore reproductive toxicity of heavy metals in wild species. Adverse effects of cadmium (CdCl2), methylmercury (MeHgCl2), and lead (PbCl2) were investigated through a range of equal molar concentrations (0, 15, 30, 60, 125, 250 µM). We found both concentration-dependent and independent cytotoxic patterns (P < 0.01, P < 0.05) in cells exposed to CdCl2, MeHgCl2, and PbCl2. Based on generation of lipid hydroperoxides, significant levels of cell oxidative perturbation were detected in the CdCl2 (P = 0.0001), PbCl2 (P = 0.001), and MeHgCl2 (P = 0.003) groups. Likewise, the antioxidant enzymes catalase and glutathione peroxidase were inhibited in all metal-treated groups (P < 0.01). Genotoxic DNA damage (single-strand break) was also observed (MeHgCl2 group, P = 0.002; CdCl2 and PbCl2 groups, P = 0.004). Increased activity of superoxide dismutase (P = 0.0002 and P = 0.01) was observed in MeHgCl2 and CdCl2, respectively. Cell apoptosis was detected in all the PbCl2 and CdCl2 (P = 0.00007) and MeHgCl2 (P = 0.001) groups. The results of this study can be used to characterize the responsiveness of fallow deer gonadal cells to the stress of toxic metal exposure.


2019 ◽  
Vol 16 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Pragya Goyal ◽  
Pranoti Belapurkar ◽  
Anand Kar

Microbial assisted remediation is the ray of hope in the current scenario of tremendous heavy metal pollution. The indiscriminate release of heavy metal laden industrial effluents in the water bodies and soil is now manifesting itself in the form of life threatening health hazards to humans. The conventional heavy metal remediation strategies are not only expensive but are ineffective in low metal concentrations. Microbial assisted remediation of heavy metals has come forward as the cheap and easy alternative. Amongst the various bacterial genera actively involved in bioremediation of cadmium and nickel in the environment, genus Bacillus has shown remarkable ability in this respect owing to its various biochemical and genetic pathways. It can perform bioremediation using multiple mechanisms including biosorption and bioaccumulation. This genus has also been able to reduce toxicity caused by cadmium and nickel in eukaryotic cell lines and in mice, a property also found in probiotic genera like Lactobacillus and Bifidobacterium. This paper reviews the role of environmentally present and known probiotic species of genus Bacillus along with different probiotic genera for their various mechanisms involved for remediation of cadmium and nickel.


2017 ◽  
Vol 63 (1) ◽  
pp. 61-73 ◽  
Author(s):  
P. Abinaya Sindu ◽  
Pennathur Gautam

Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.


2016 ◽  
Vol 35 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Moshood Keke Mustapha ◽  
Joy Chinenye Ewulum

AbstractHeavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP) remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.


2018 ◽  
Vol 86 (3) ◽  
pp. 36 ◽  
Author(s):  
Nada Al-Hasawi ◽  
Sanaa Amine ◽  
Ladislav Novotny

Cadmium (Cd) is a toxic heavy metal occurring in the environment as an industrial pollutant. The systematic accumulation of Cd in the human body may lead to major health problems. Quercetin (QE) is a natural flavonoid widely distributed in plants and is a part of human diet. Many studies have demonstrated the multiple benefits of QE to humans in protecting cells of our bodies. The aim of this study was to investigate the effect of QE and Cd on the proliferation of astrocytoma 1321N1 cells. Results indicated that the simultaneous exposure of the cells to 200 µM QE and 16 μM Cd significantly reduced cell viability to 6.9 ± 1.6% with respect to vehicle-treated cells. Other experiments of QE pre-treatment followed by the exposure to Cd alone or with QE indicated significant but decreased ability of QE or Cd to reduce proliferation of the cells compared to their co-incubation. Our study suggested a synergetic anti-proliferative interaction of Cd and QE in malignantly transformed cells. This adds new information regarding the biological effects of QE.


Sign in / Sign up

Export Citation Format

Share Document