scholarly journals INVESTIGATION OF LIGHTWEIGHT STRUCTURAL MATERIALS PRODUCED USING ALUMINUM SCRAPS WITH CEMENT MORTAR

Author(s):  
ABDULQADER NIHAD NOORI

A lot of environmental concerns are increasing day after day result in the raise of solid waste in large quantities in the world resulting from the demolition of buildings and various industrial and commercial activities. This research provides the possibility of reusing one of these wastes solid aluminum scrap (Als) by using it to produce a modified type of cement mortar. The research focuses on the mechanical behavior of the new cement mortar type obtained by adding aluminum scrap by different percentages (1%, 2%, 3%, 4%, and 5%) as a replacement ratio from the weight of sand mixed with Ordinary Portland Cement (OPC). The findings of this research indicated the possibility of using aluminum waste material in certain limits where the compressive strength significantly reduced by increasing the percentage of Als. The most interesting observation was to increase the volume of the mixture by increasing the ratio of Als. According to the results, it is possible to use this type of cement mortar to produce lightweight structural members such as slabs, bricks, etc. Finally, the general formulation was proposed based on the regression analysis and experimental measurements to give a capture of the compressive strength of mortar under any variables alter (age of specimen and/or quantity of aluminum replacement).

2018 ◽  
Vol 7 (4.35) ◽  
pp. 516
Author(s):  
NA Dzulkifli ◽  
RC Omar ◽  
Fathoni Usman ◽  
Hairin Taha ◽  
KA Sanusi

Brick is one of largest material used in construction of infrastructure all over the world. A conventional bricks such as clay brick and concrete brick are produced from clay with high temperature kiln firing and from ordinary Portland cement (OPC) concrete respectively.   Both of this activities lead to CO2 emission. The burning process requires high temperature at the same time release carbon dioxide and pollute the environment. At present, carbon emissions has become a crucial issues in the society that must be solved. Several studies had demonstrated that brick can be produced from bacteria based on Microbial Induced Calcite Precipitation (MICP). The objective of this study is to develop cement free- brick from vegetables waste with added eggshell as calcium additive to induce biocementation of brick. Brick specimen was cast in the mould size 210 x 90 x 65 mm and casting for 28 days. The study showed that there was an increased in compressive strength up to 0.062 N/mm2 as the curing period increased to 28 days which showed the occurrence of biocementation activities. SEM-EDX analysis confirmed the presence of calcite precipitation. The result indicated that vege-grout can be used as binding agent for biocementation to produce bricks.


2021 ◽  
Vol 11 (22) ◽  
pp. 10826
Author(s):  
Hamed Izadgoshasb ◽  
Amirreza Kandiri ◽  
Pshtiwan Shakor ◽  
Vittoria Laghi ◽  
Giada Gasparini

Machine learning is the discipline of learning commands in the computer machine to predict and expect the results of real application and is currently the most promising simulation in artificial intelligence. This paper aims at using different algorithms to calculate and predict the compressive strength of extrusion 3DP concrete (cement mortar). The investigation is carried out using multi-objective grasshopper optimization algorithm (MOGOA) and artificial neural network (ANN). Given that the accuracy of a machine learning method depends on the number of data records, and for concrete 3D printing, this number is limited to few years of study, this work develops a new method by combining both methodologies into an ANNMOGOA approach to predict the compressive strength of 3D-printed concrete. Some promising results in the iteration process are achieved.


2021 ◽  
Author(s):  
Gude Reddy Babu ◽  
Pala Gireesh Kumar ◽  
Nelluru Venkata Ramana ◽  
Bhumireddy Madhusudana Reddy

The present examination illustrates the impact on the hardened and fresh cement mortar and cement with the inclusion of nanosilica of size 40 nm in various environmental conditions (UltraTech, India). It is quite notified that an elevation in compressive strength as well as flexural strength along with an improvisation in the performance and life span of cement mortar. The samples of M5 grade blended with a ninety percentage of concrete and remaining with nanosilica was identified to have a finer working elevation in as well as in standards when collated with the conventional cement mortar. The corollary of hardened and fresh cement, strength parameters were looked upon with the aid of XRD (X-ray Diffraction). Also, the SEM (Scanning Electron Microscope) test holds a predominant role in analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tsai-Lung Weng ◽  
Wei-Ting Lin ◽  
An Cheng

This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.


2019 ◽  
Vol 9 (4) ◽  
pp. 763
Author(s):  
Jun-Cheol Lee ◽  
Hyeong-Gil Choi

The effect of borosilicate glass on the thermal neutron shielding performance and the compressive strength of cement mortar was investigated. The borosilicate glass was used as a replacement material for fine aggregate in this study. The cement mortars were mixed by four different replacement ratios of borosilicate glass. The following tests were conducted with the cement mortar: (1) Compressive strength, (2) TG/DSC and (3) neutron shielding rate using 241Am–Be neutron source. Results indicated that the cement mortar with borosilicate glass showed higher compressive strength and higher thermal neutron shielding rate as the replacement ratio of borosilicate glass increased. The increase of the compressive strength and the thermal neutron shielding rate was associated with the pozzolanic reaction of borosilicate glass and the increase of boron content in cement mortar, respectively.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5751
Author(s):  
Qian Chen ◽  
Haiming Chen ◽  
Pengju Wang ◽  
Xiang Chen ◽  
Jie Chen

The effect of the dosage of sulphur-containing tailings (STs) and curing temperature on the properties of M32.5 cement mortar was studied in this work. An experimental study was conducted to evaluate the effects of STs with different substitution ratios (0, 10%, 20%, 30%, 40%) on the compressive strength experiment, fluidity, expansion ratio, and pore structure of M32.5 cement mortar. The results showed that the addition of STs reduced the fluidity of mortar, and the fluidity decreased with the increase of the STs dosage. The compressive strength of mortars increased at a lower substitution rate (0~20%) but decreased at a higher substitution rate (>20%). Ettringite peaks and new sulfate peaks were found by X-ray diffraction (XRD) analysis. Scanning electron microscope (SEM) observation of the microstructure showed that a large number of hydrated products, such as ettringite, formed and filled in the interstitial space, which was conducive to the development of strength. The optimal STs replacement ratio of river sand was 10%. Then, the performance of mortar at curing temperatures of 23 ± 1, 40, 60, and 80 °C was further investigated under the optimal STs replacement ratio. Under high-temperature curing conditions, the early strength of M32.5 cement mortar with STs increased greatly, but the late strength decreased gradually with the increase in curing temperature. The early strength development of the mortar mainly depended on the high speed of hydration reaction, and the late strength variation was mainly affected by hydration products and the pore size distribution. After comprehensive consideration, the optimal curing temperature of M32.5 cement mortar with STs was 40 °C.


Author(s):  
Walid Edris ◽  
Mahmoud Al-Tamimi ◽  
Mohammed Aldelgawy

This paper aims to explore and evaluate the use of Jordanian Feldspar as a natural resource partially replacement material for each of cement and sand in cement mortar. First, Al-Jaishia area was explored through a global positioning system (GPS) navigation to gather site samples of Feldspar raw material. Afterward, cement and sand were partially replaced by Feldspar with substitution ratios of 5%, 10%, 15%, 20%, and 25% for each. The study included the effect of cement replacement on normal consistency and setting time for cement paste. The water content along with initial and final setting times increased via the increment of cement replacement ratio. Moreover, mechanical properties (compressive, flexural, and residual compressive strengths) of cement mortar due to both cement and sand replacement were evaluated. The compressive and flexural strengths after 3, 7, and 28 days of curing were examined for both cement and sand replacement. While, residual compressive strength for cement replacement after 28 days was measured at elevated temperatures of 400°C, 600°C, and 800°C. The compressive and flexural strengths decreased by increasing the Feldspar replacement ratio for both cement and sand at all specimen ages. Whereas, heat resistance properties were improved by cement/Feldspar replacement. The best result for residual compressive strength was obtained at 15% replacement ratio and 400°C temperature.


2012 ◽  
Vol 586 ◽  
pp. 107-110
Author(s):  
Tsai Lung Weng ◽  
Wei Ting Lin ◽  
Ping Chuna Chen

The studying used different metakaolin replacement ratio of cement mortar exposed to different environments to investigate the quality of cement with metakaolin basic mechanical properties of materials and white efflorescence quantify the effect of microscopic properties. The specimens were analyzed with Compressive strength test and Matlab image analysis. The results presented that: (1) Comparing with between the appropriate amount of metakaolin replacement of cement and control group, the compressive strength of the appropriate amount of metakaolin replacement of cement is higher than control group’s. Especially, the compressive strength of 15% metakaolin replacement of cement is the highest; (2) Matlab image analysis the amount found in white efflorescence into freezers > carbon tube ≒ normal atmosphere.


Sign in / Sign up

Export Citation Format

Share Document