scholarly journals Effect of Borosilicate Glass on Thermal Neutron Shielding Performance and Compressive Strength of Cement Mortar

2019 ◽  
Vol 9 (4) ◽  
pp. 763
Author(s):  
Jun-Cheol Lee ◽  
Hyeong-Gil Choi

The effect of borosilicate glass on the thermal neutron shielding performance and the compressive strength of cement mortar was investigated. The borosilicate glass was used as a replacement material for fine aggregate in this study. The cement mortars were mixed by four different replacement ratios of borosilicate glass. The following tests were conducted with the cement mortar: (1) Compressive strength, (2) TG/DSC and (3) neutron shielding rate using 241Am–Be neutron source. Results indicated that the cement mortar with borosilicate glass showed higher compressive strength and higher thermal neutron shielding rate as the replacement ratio of borosilicate glass increased. The increase of the compressive strength and the thermal neutron shielding rate was associated with the pozzolanic reaction of borosilicate glass and the increase of boron content in cement mortar, respectively.

2015 ◽  
Vol 727-728 ◽  
pp. 167-170 ◽  
Author(s):  
Chin Peow Woon ◽  
Poi Ngian Shek ◽  
Mahmood Md Tahir ◽  
Ahmad Beng Hong Kueh

For environmental protection and sustainable development, many research studies have been carried out on the utilization of waste materials in construction such as fly ash, mine tailings, slags, construction and demolition waste, wood sawdust, rice husk ash, crumb rubber and etc. In this study, two types of waste seashells; green mussel and cockle were tested experimentally to replace fine aggregate in cement mortar. The compressive strength of the cement mortar with seashells were compared with those of a control mortar that was made of a conventional river sand. The main parameter of this study was the proportion of ground seashells used as sand replacement (25%, 50%, 75% or 100% by weight). Incorporation of cockle in cement mortar resulted in higher compressive strength as compared to conventional mortar up to 110 percent. However, incorporation of green mussel resulted in decrement in compressive strength by 67 percent. The results indicate that ground seashells can be applied as a sand replacement in mortar mixes and may improve the compressive strength of rendering and plastering mortar.


2014 ◽  
Vol 935 ◽  
pp. 142-145 ◽  
Author(s):  
Seung Jo Lee

Eight hybrid fiber reinforced cement mortar (HFRC) mixes reinforced with Garnet-Nylon, Polypropylene (PP), Steel Fiber (SF) was tested in order to examine the effect of the W/B and replacement ratio of the Garnet-Nylon, PP, SF on the properties of matter and different material properties of HFRC. Main variables investigated were W/B and replacement ratio of the Garnet and Nylon, PP, SF. The measured material properties of fiber reinforced NS (Nylon-SF) specimens were analyzed using the two types of strength and compared with those recorded with PS (PP-SF) specimens. The flow of HFRC increased with the increase of the W/B. In addition, compressive strength, bending of HFRC was higher than those of replacement ratio of the Garnet-fibers, though the total HFRC was lower than that with NS-GA-01 specimen. For enhancing the toughness and strength of HFRC, using the GA of 5 % and Nylon of 0.1 %, PP of 0.1%, SF of 0.4% replacement ratio was more effective than using the GA of 20 % and Nylon of 0.4 %, PP of 0.4%, SF of 0.8% replacement ratio.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2018 ◽  
Vol 7 (4.2) ◽  
pp. 5
Author(s):  
Dr Lavanya Prabha.Sa ◽  
Dr Neelamegam ◽  
Vinodhini Sri.R

This paper presents the study to investigate the viability of using copper slag as fine aggregate in cement mortar. Two series of cement mortar mixtures were prepared with different proportion of copper slag at different workability. In the first series, various proportions of copper slag is substituted for sand ranging from 0% to 100% with constant workability. Second series consists of fully replaced copper slag for sand in the cement mortar, which was achieved by maintaining the same workability as that of the control mortar mixture from first series and a control mixture for this new workability with sand as fine aggregate. The strength of twelve trial cement mortar mixtures were tested. The results indicate high compressive strength upto 50% replacement of copper slag, after that the compressive strength decreases with increase in copper slag percentage in cement mortar. The copper slag content in the mortar adversely affected the compressive strength of the mortar mixtures as 4.2% and 21.1% improvement in the compressive strength of the cement mortar for 50% replacement compared and 100% replacement compared with the control mortar mixtures. The density of cement mortar increases with increase in copper slag. From these trial mixtures two optimized mixtures were selected and were used to cast the sandwich panels. This panels were tested for flexural behaviour and axial load compression behaviour. The behavior of sandwich panels were simulated using ANSYS and the results were compared with experimental results.   


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


2013 ◽  
Vol 712-715 ◽  
pp. 905-908
Author(s):  
Qun Pan ◽  
Bin Zhu ◽  
Xiao Huang ◽  
Lin Liu

Properties of alkali-activated slag cements compounded with soluble glasse with a high silicate modulus Ms=2.6 were detailedly studied in this paper, including compressive strength and flexure strength characterictics at the ages of 3,7,28 days and flow values of fresh cement mixtures on a jolting table. As a result, with the compressive strength at the age of 28 days of 95.6-107.8 MPa has been developed, and the flow values and strength characteristics of alkali-activated slag cement mortars increased with increase in a water to cement (alkaline activator solution to slag) ratio, and the flow value (determined on the cement mortar mixtures) would reach 145 mm. Moreover, the development speed of strength characteristics of mortar specimens would be affected negatively by increasing of water demand (requirement).


2017 ◽  
Vol 67 (326) ◽  
pp. 119 ◽  
Author(s):  
Zhengqi Li

The workability, 28-day compressive strength and free drying shrinkage of a very high strength (121-142 MPa) steel micro fiber reinforced portland cement mortar were studied under a combined influence of fine aggregate content and fiber content. The test results showed that an increase in the fine aggregate content resulted in decreases in the workability, 28-day compressive strength and drying shrinkage of mortar at a fixed fiber content. An increase in the fiber content resulted in decreases in the workability and drying shrinkage of mortar, but an increase in the 28-day compressive strength of mortar at a fixed fine aggregate content. The modified Gardner model most accurately predicted the drying shrinkage development of the high strength mortars, followed by the Ross model and the ACI 209R-92 model. The Gardner model gave the least accurate prediction for it was developed based on a database of normal strength concrete.


Sign in / Sign up

Export Citation Format

Share Document