scholarly journals PKB Zmaj: A new variety of winter rye created at PKB Agroekonomik institute

2021 ◽  
Vol 27 (1) ◽  
pp. 17-23
Author(s):  
Nenad Đurić ◽  
Dobrivoj Poštić ◽  
Vojin Cvijanović ◽  
Gordana Branković ◽  
Vera Đekić ◽  
...  

For the last twenty years, in addition to breeding wheat, PKB Agroekonomik Institute has been working very intensively on breeding other real or bread grains. High-yielding, late winter rye variety PKB Zmaj has been obtained by the pedigree method by a simple crossing of genetically different parents from the collection of PKB Agroekonomik Institute: variety Rtanj and line PKB-R-105. This variety of winter rye combines genes responsible for very high yield potential, resistance to lodging, low temperatures and more significant diseases in the rye. Winter rye variety PKB Zmaj was registered by the Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia in 2018. With the use of optimal agricultural techniques, the variety PKB Zmaj has a high genetic potential for fertility and high adaptation to different climatic and soil conditions.

2018 ◽  
Vol 12 (4) ◽  
pp. 42-45
Author(s):  
Рустем Кадиков ◽  
Rustem Kadikov ◽  
В. Михкельман ◽  
V. Mihkel'man

Field studies in the northern and southern forest-steppe zones of Bashkortostan determine the parameters of yield, grain quality and ecological adaptability of brewing barley varieties. The competitive advantage of the barley of Mikhailovskiy variety is revealed, which most consistently implements the high yield potential and brewing properties of grain by years and zones of the Republic.


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


2021 ◽  
Author(s):  
Milica Dima ◽  
Aurelia Diaconu ◽  
Reta Drăghici ◽  
Drăghici Iulian ◽  
Matei Gheorghe

"For the capitalization of the climate and soil conditions for the sandy soil region in Southern Oltenia by cultivating peanuts it is necessary to use varieties with large production abilities and proper technology for the crops. In view of its cultivation on south Oltenia sandy soils, there were carried out in the period 2004-2006, at the Plants Crops Research and Development Station on Sandy Soils Dabuleni, experiments have been set regarding aspects such as: the optimal seeding period, the recommendation varieties with high yield potential and balanced composition. The research was conducted under irrigation conditions, in a three-year rotation of wheat, peanut, maize. Along with erect growth type varieties, known for their short vegetation period, rising and creeping growth type varieties can also be used; these varieties have a great production potential in our country`s conditions. Establishing the proper time for seeding is espe since sandy soils are heating quickly but are also cooling quickly, the best seeding time is between the end of April- the beginning of May, depending on the date when the seeding depth has a steady temperature, minimal required for the seed to germinate."


2022 ◽  
Vol 1 (49) ◽  
pp. 1-1
Author(s):  
Galina Konieva ◽  
◽  
Vitalii Ochirov ◽  
Vera Ivanova ◽  
Rustam Shabanov

Realization of the yield potential depends on the biological characteristics of the variety, cultivation technology and weather conditions. The article presents the results of studies carried out in 2018-2021. on the productivity of various varieties of winter rye in dryland conditions of the central zone of the Republic of Kalmykia. The fresh yield of winter rye harvested for fodder depended on the variety. Its highest index was obtained for the Saratovskaya 4 variety and amounted to 17.7 ... 26.9 t / ha. The analysis of the productivity of winter rye harvested for green fodder showed that the studied varieties provided the yield of dry matter at the level of 5.4 ... 7.1 t / ha on average for three years. All varieties have good winter hardiness. Keywords: WINTER RYE, VARIETY, NAKED FALLOW, PLANT HEIGHT, GREEN MASS, FRESH YIELD, CROP PRODUCTIVITY, DRY MATTER


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


2018 ◽  
Vol 98 (6) ◽  
pp. 1389-1391
Author(s):  
S. Torabi ◽  
B.T. Stirling ◽  
J. Kobler ◽  
M. Eskandari

OAC Bruton is an indeterminate large-seeded food-grade soybean [Glycine max (L.) Merr.] cultivar with high yield potential, high seed protein concentration, and resistance to soybean cyst nematode (SCN). OAC Bruton is developed and recommended for soybean growing areas in southwestern Ontario with 2950 or greater crop heat units. OAC Bruton is classified as a maturity group 1 (MG1) cultivar with a relative maturity of 1.8.


Sign in / Sign up

Export Citation Format

Share Document