scholarly journals The ability of maize Lancaster inbreds to callusogenesis in vitro under varying environmental conditions

2018 ◽  
Vol 22 ◽  
pp. 228-234 ◽  
Author(s):  
K. V. Derkach ◽  
V. V. Borysova ◽  
V. O. Maletskyi ◽  
T. M. Satarova

Aim. This work is focused on the estimation of the callusogenic potential of 10 maize Lancaster germplasm inbreds in comparison with well-known inbreds-standards with high callusogenic ability A188, Chi31 and PLS61, and the identification of genotypes with stable morphogenic callus formation under varying conditions of donor plant cultivation during three years of researches. Methods. Method of cell, tissue and organ culture in vitro. Field method. One-way and two-way analysis of variance. Results. For the investigated Lancaster inbreds the average multi-annual value of the total frequency of callusogenesis was 80.1 %, the frequency of morphogenic type I callus formation was 25.7 %, type II callus formation was 43.8 %, but for inbreds-standards these ones reached, respectively, 96.2 %, 12.2 % and 65.4 %. The level of callusogenesis varied depending on the year of investigations for all studied genotypes. The influence of genotype, year conditions and the combination of these factors on callus induction for most of the studied inbreds was significant. Conclusions. The impact of the interaction of a genotype and ecological factors of donor plant cultivation on morphogenic callusogenesis of type I as well as type II was the most significant forLancaster inbreds.Lancaster inbreds ДK298, ДK6080, ДK212 and ДK420-1 were the most stable under varying environmental conditions on the total frequency of callusogenesis, the frequencies of morphogenic and type II callus formation. None of the studied inbreds revealed the stability on type I callus formation frequency. Keywords: maize (Zea mays L.), Lancaster germplasm, callusogenesis, culture in vitro.

2003 ◽  
Vol 10 (3) ◽  
pp. 424-432 ◽  
Author(s):  
Chuh K. Chong ◽  
Thien V. How ◽  
Geoffrey L. Gilling-Smith ◽  
Peter L. Harris

Purpose: To investigate the effect on intrasac pressure of stent-graft deployment within a life-size silicone rubber model of an abdominal aortic aneurysm (AAA) maintained under physiological conditions of pressure and flow. Methods: A commercial bifurcated device with the polyester fabric preclotted with gelatin was deployed in the AAA model. A pump system generated physiological flow. Mean and pulse aortic and intrasac pressures were measured simultaneously using pressure transducers. To simulate a type I endoleak, plastic tubing was placed between the aortic wall and the stent-graft at the proximal anchoring site. Type II endoleak was simulated by means of side branches with set inflow and outflow pressures and perfusion rates. Type IV endoleak was replicated by removal of gelatin from the graft fabric. Results: With no endoleak, the coated graft reduced the mean and pulse sac pressures to negligible values. When a type I endoleak was present, mean sac pressure reached a value similar to mean aortic pressure. When net flow through the sac due to a type II endoleak was present, mean sac pressure was a function of the inlet pressure, while pulse pressure in the sac was dependent on both inlet and outlet pressures. As perfusion rates increased, both mean and pulse sac pressures decreased. When there was no outflow, mean sac pressure was similar to mean aortic pressure. In the presence of both type I and type II endoleaks, mean sac pressure reached mean aortic pressure when the net perfusion rate was low. Conclusions: In vitro studies are useful in gaining an understanding of the impact of different types of endoleaks, in isolation and in combination, on intrasac pressure after aortic stent-graft deployment.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


PEDIATRICS ◽  
1973 ◽  
Vol 51 (5) ◽  
pp. 957-958
Author(s):  
G. Bennett Humphrey ◽  
Bahaod-Din Mojab ◽  
Ingomar Mutz

Reading the excellent article by Drs. Murphy and Oski, "Congenital Dyserythropoietic Anemia (CDA)",1 which further defines type II, produced a sense of deja vu. In the 1950s, nonspherocytic, hemolytic anemias (HNHA) were categorized as type I and II based on the in vitro autohemolysis test.2 This group of anemias has subsequently been demonstrated to be due to a series of enzymatic abnormalities in carbohydrate metabolism.3 In CDA, the morphological characteristics which define types I, II, and III probably reflect nuclear rather than cytoplasmic abnormalities.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 189 (3) ◽  
pp. 807-817 ◽  
Author(s):  
Narisara Chantratita ◽  
Vanaporn Wuthiekanun ◽  
Khaemaporn Boonbumrung ◽  
Rachaneeporn Tiyawisutsri ◽  
Mongkol Vesaratchavest ◽  
...  

ABSTRACT Melioidosis is a notoriously protracted illness and is difficult to cure. We hypothesize that the causative organism, Burkholderia pseudomallei, undergoes a process of adaptation involving altered expression of surface determinants which facilitates persistence in vivo and that this is reflected by changes in colony morphology. A colony morphotyping scheme and typing algorithm were developed using clinical B. pseudomallei isolates. Morphotypes were divided into seven types (denoted I to VII). Type I gave rise to other morphotypes (most commonly type II or III) by a process of switching in response to environmental stress, including starvation, iron limitation, and growth at 42°C. Switching was associated with complex shifts in phenotype, one of which (type I to type II) was associated with a marked increase in production of factors putatively associated with in vivo concealment. Isogenic types II and III, derived from type I, were examined using several experimental models. Switching between isogenic morphotypes occurred in a mouse model, where type II appeared to become adapted for persistence in a low-virulence state. Isogenic type II demonstrated a significant increase in intracellular replication fitness compared with parental type I after uptake by epithelial cells in vitro. Isogenic type III demonstrated a higher replication fitness following uptake by macrophages in vitro, which was associated with a switch to type II. Mixed B. pseudomallei morphologies were common in individual clinical specimens and were significantly more frequent in samples of blood, pus, and respiratory secretions than in urine and surface swabs. These findings have major implications for therapeutics and vaccine development.


1999 ◽  
Vol 112 (2) ◽  
pp. 243-252
Author(s):  
E. Planus ◽  
S. Galiacy ◽  
M. Matthay ◽  
V. Laurent ◽  
J. Gavrilovic ◽  
...  

Type II pneumocytes are essential for repair of the injured alveolar epithelium. The effect of two MMP collagenases, MMP-1 and MMP-13 on alveolar epithelial repair was studied in vitro. The A549 alveolar epithelial cell line and primary rat alveolar epithelial cell cultures were used. Cell adhesion and cell migration were measured with and without exogenous MMP-1. Wound healing of a cell monolayer of rat alveolar epithelial cell after a mechanical injury was evaluated by time lapse video analysis. Cell adhesion on type I collagen, as well as cytoskeleton stiffness, was decreased in the presence of exogenous collagenases. A similar decrease was observed when cell adhesion was tested on collagen that was first incubated with MMP-1 (versus control on intact collagen). Cell migration on type I collagen was promoted by collagenases. Wound healing of an alveolar epithelial cell monolayer was enhanced in the presence of exogenous collagenases. Our results suggest that collagenases could modulate the repair process by decreasing cell adhesion and cell stiffness, and by increasing cell migration on type I collagen. Collagen degradation could modify cell adhesion sites and collagen degradation peptides could induce alveolar type II pneumocyte migration. New insights regarding alveolar epithelial cell migration are particularly relevant to investigate early events during alveolar epithelial repair following lung injury.


2018 ◽  
Vol 28 (3) ◽  
pp. 586-593 ◽  
Author(s):  
Mette Calundann Noer ◽  
Sofie Leisby Antonsen ◽  
Bent Ottesen ◽  
Ib Jarle Christensen ◽  
Claus Høgdall

ObjectiveTwo distinct types of endometrial carcinoma (EC) with different etiology, tumor characteristics, and prognosis are recognized. We investigated if the prognostic impact of comorbidity varies between these 2 types of EC. Furthermore, we studied if the recently developed ovarian cancer comorbidity index (OCCI) is useful for prediction of survival in EC.Materials and MethodsThis nationwide register-based cohort study was based on data from 6487 EC patients diagnosed in Denmark between 2005 and 2015. Patients were assigned a comorbidity index score according to the Charlson comorbidity index (CCI) and the OCCI. Kaplan-Meier survival statistics and adjusted multivariate Cox regression analyses were used to investigate the differential association between comorbidity and overall survival in types I and II EC.ResultsThe distribution of comorbidities varied between the 2 EC types. A consistent association between increasing levels of comorbidity and poorer survival was observed for both types. Cox regression analyses revealed a significant interaction between cancer stage and comorbidity indicating that the impact of comorbidity varied with stage. In contrast, the interaction between comorbidity and EC type was not significant. Both the CCI and the OCCI were useful measurements of comorbidity, but the CCI was the strongest predictor in this patient population.ConclusionsComorbidity is an important prognostic factor in type I as well as in type II EC although the overall prognosis differs significantly between the 2 types of EC. The prognostic impact of comorbidity varies with stage but not with type of EC.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000712-000717
Author(s):  
Joshua S. Petko ◽  
Philip A. Lovell ◽  
Jeremy D. Clifton ◽  
Alexander J. Bersani ◽  
Karl F. Schoch

Abstract Conversion coatings are treatments applied to aluminum structures to inhibit corrosion while maintaining electrical conductivity. In aerospace applications, the most common type of conversion coatings (MIL-DTL-5541 Type I) contain hexavalent chromium compounds as the corrosion-inhibiting agent. These Type I conversion coatings have a long pedigree and are highly effective in preventing corrosion; however, the hexavalent chromium compounds in these coatings are carcinogenic and water-soluble. Therefore, the use of these compounds is highly regulated in order to protect both workers and the public, leading to high cost in both use and disposal. Regulations are also beginning to restrict outright use, where new designs for the DOD are prohibited from using Type I coatings by DFARS 48 CFR Parts 223 and 252 and all use has been prohibited by Europe by REACH regulations since September 2017. In response, more environmentally friendly non-hexavalent chromium-based processes, referred to as MIL-DTL-5541 Type II conversion coatings, have become available. However, the long term reliability and performance impacts resulting from the use of these coatings are not fully understood and there is an ongoing effort in the aerospace industry organized by NASA to fully define these impacts while hardware is still in the design stage. While significant work has been performed to define the corrosion performance of various type-II conversion coatings, there has been minimal work performed to quantify the impact a type-II conversion coating would have on RF electrical assemblies. The standard methodologies defined by MIL-DTL-81706B have significant limitations and cannot fully capture the impact at microwave frequencies. For this reason, an investigation is underway at Northrop Grumman to quantify the impact these coatings may have on the quality, reliability, and performance of our electronic systems. At IMAPS 2017, Northrop Grumman introduced a RF test article designed to assess the longitudinal impact a Type II conversion coating would have on RF electrical assemblies where plated printed wiring boards (PWBs) and aluminum structures come in intimate contact. The test article features a specialized suspended stripline/microstrip stepped impedance filter designed to de-tune in the presence of galvanic corrosion. This talk follows the work presented in IMAPS 2017 by discussing an experiment where three different populations of test articles, each coated with a different type of conversion coating, are subjected to environmental testing. This talk also discusses how an initial measurement of these test articles before environmental exposure showed little difference between these populations. Finally, this talk reviews the initial results of this experiment, discussing environmental testing and the RF measurements captured during these tests.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000146-000150
Author(s):  
Joshua S. Petko ◽  
Philip A. Lovell ◽  
Jeremy D. Clifton ◽  
Paul H. Cohen ◽  
Karl F. Schoch

Abstract Conversion coatings are used to inhibit corrosion on aluminum structures while maintaining electrical conductivity. The most common type of conversion coatings in aerospace applications (MIL-DTL-5541 Type I), contain hexavalent chromium compounds as the corrosion-inhibiting additive. These Type I conversion coatings have a long pedigree and are highly effective in preventing corrosion; however, the hexavalent chromium compounds in these coatings are carcinogenic and water-soluble. Therefore, the use of these compounds is highly regulated in order to protect both workers and the public leading to high cost in both use and disposal. In addition to these regulations, use of these materials on new designs for DOD is prohibited by DFARS 48 CFR Parts 223 and 252, and is scheduled to be prohibited in Europe in September 2017 by REACH regulations. In response, new more environmentally friendly non-hexavalent chromium-based processes are becoming available. Coatings resulting from these types of processes are referred to as MIL-DTL-5541 Type II conversion coatings. The long term reliability and performance impacts resulting from the use of these coatings are not fully understood and there currently is an effort in the aerospace industry organized by NASA to fully define these impacts while hardware is still in the design stage. While significant work has been performed to define the corrosion performance of various type-II conversion coatings, there has been minimal work performed to quantify the impact a type-II conversion coating would have on RF electrical assemblies. Of particular interest is the impact a conversion coating can have on microwave loss at higher frequencies. Many RF electrical assemblies use aluminum radiator and waveguide structures to transfer energy between components and radiate into freespace. If microwave losses increase due to a change in conversion coating, there could be negative impacts to key performance parameters such as system sensitivity, dynamic range, noise figure, and radiated power. Understanding this impact is critical in determining whether the design change impact is isolated only to the conversion coating or whether it propagates to other subcomponents to compensate for the loss in performance. The standard way to quantify the electrical resistance of conversion coatings is defined by MIL-DTL-81706B. The test involves collecting a DC resistance measurement on a processed panel using a two-probe measurement with 200 psi of pressure applied to the probes. The resulting value is averaged from 10 samples of data collected across the panel. While this test in MIL-DTL-81706B is well defined, it has significant limitations that caused this research to seek another way to quantify this value. First, the repeatability of the two-point probe is not consistent across the panel. Some of the conversion coatings can be brittle and can easily be disturbed by the force applied by the probes. The poor repeatability is exacerbated when the test articles are environmentally exposed, leaving a non-uniform surface. Finally, this test methodology is performed at DC, which does not directly quantify the impact of the coating at microwave frequencies due to phenomena such as skin effect and potential plasmonic response. This talk discusses an experiment performed to assess the impact of the use of type-II conversion coatings on microwave loss. In order to assess this impact, a set of precision machined waveguide structures were used as test articles in the experiment. The advantage of using this waveguide-based approach is that it provides a distributed surface to assess the average impact of conversion coatings on surface resistivity. This average resistivity more closely maps to the RF losses seen by microwave systems. In addition, testing the waveguide test article provides a very repeatable test methodology; waveguide technology is very mature from a manufacturing perspective. Also, the waveguide flanges provide a repeatable way to connect to the test article so long as they are masked or cleaned after any potential environmental exposure. Finally, the rectangular shape of the waveguide can be canonically described by a closed form expression, improving understanding of the specific mechanisms leading to the loss. This talk discusses an experiment where multiple 3-foot pieces of WR-28 were used as test articles. The WR-28 test articles were chosen to assess the impact to performance at Ka-band. The 3-foot sections are convenient articles because they can easily be measured on a workbench while at the same time being electrically long at Ka-band (on the order of 100 wavelengths). This talk discusses three different populations of test articles, each coated with a different type of conversion coating. This talk also discusses how an initial measurement of these test articles before environmental exposure showed little difference between these populations. Finally, this talk will discuss plans for environmental testing and in-process RF measurements to be captured during these tests.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000046-000051 ◽  
Author(s):  
Joshua S. Petko ◽  
Philip A. Lovell ◽  
Jeremy D. Clifton ◽  
Paul H. Cohen ◽  
Karl F. Schoch

Abstract Conversion coatings are used to inhibit corrosion on aluminum structures while maintaining electrical conductivity. The most common type of conversion coatings in aerospace applications (MIL-DTL-5541 Type I), contain hexavalent chromium compounds as the corrosion-inhibiting additive. These Type I conversion coatings have a long pedigree and are highly effective in preventing corrosion; however, the hexavalent chromium compounds in these coatings are carcinogenic and water-soluble. Therefore, the use of these compounds is highly regulated in order to protect both workers and the public leading to high cost in both use and disposal. In addition to these regulations, use of these materials on new designs for DOD is prohibited by DFARS 48 CFR Parts 223 and 252, and is scheduled to be prohibited in Europe in September 2017 by REACH regulations. In response, new more environmentally friendly non-hexavalent chromium-based processes are becoming available. Coatings resulting from these types of processes are referred to as MIL-DTL-5541 Type II conversion coatings. The long term reliability and performance impacts resulting from the use of these coatings are not fully understood and there currently is an effort in the U. S. aerospace industry organized by NASA to fully define these impacts while hardware is still in the design stage. While significant work has been performed to define the corrosion performance of various Type II conversion coatings, there has been minimal work performed to quantify the impact a Type II conversion coating would have on RF electrical assemblies where plated printed wiring boards (PWBs) and aluminum structures come in intimate contact. The primary concern for these assemblies is that these junctions are inherently susceptible to galvanic corrosion; PWBs are clad with copper, which is highly cathodic while aluminum is highly anodic. In order to reduce the potential for galvanic corrosion, PWBs in DOD applications are typically plated with SnPb coating which is less cathodic than the copper. In addition, an immersion bath is used to coat the aluminum with a conversion coating that is less anodic. Changes to the conversion coating could increase the galvanic corrosion occurring at this junction. In addition, RF signals may also be negatively impacted by changes to the electrical resistivity and parasitic capacitances caused by changes to this junction. For this reason, it is highly desirable to create a RF test article that is highly sensitive to the impacts of galvanic corrosion at the junctions of passivated aluminum and plated printed wiring boards. This talk discusses a RF test article that is designed to assess the longitudinal impact of galvanic corrosion on electrical assemblies. The test article features a specialized suspended stripline/microstrip stepped impedance filter that is designed to de-tune in the presence of galvanic corrosion. The design of this filter uses a pair of machined aluminum housings to sandwich a thin two sided printed wiring board. The high-impedance sections of the filter employ cavities above and below the thin PWB to create an effective airstripline transmission line. The low-impedance sections of the filter employ a PWB ground plane to create a microstrip mode. Small aluminum feet are machined in the bottom aluminum housing to create an electrical contact between the aluminum housing and PWB ground plane. These feet are designed to function as sacrificial elements that corrode away in the presence of galvanic corrosion, creating series capacitance in the ground signal path. This talk reviews recent test results that show how the response of this specially designed filter changes in the presence of galvanic corrosion and compares these results with electrical simulations. This talk also discusses how information gained from the filter response can be used to assess the electrical impact of Type II conversion coatings. Finally, this talk will discuss the experimental design needed to quantify the impact of Type II conversion coatings with respect to the current baseline processes.


Sign in / Sign up

Export Citation Format

Share Document