scholarly journals Tumor cell-activated “Sustainable ROS Generator” with homogeneous intratumoral distribution property for improved anti-tumor therapy

Theranostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 379-396
Author(s):  
Junjie Liu ◽  
Xiu Zhao ◽  
Weimin Nie ◽  
Yue Yang ◽  
Chengcheng Wu ◽  
...  

2012 ◽  
Vol 28 (6) ◽  
pp. 448 ◽  
Author(s):  
Ling ZHU ◽  
Xiangxi WANG ◽  
Xuemei LI ◽  
Jinliang YANG


2019 ◽  
Vol 20 (2) ◽  
pp. 273 ◽  
Author(s):  
Michaela Jung ◽  
Christina Mertens ◽  
Elisa Tomat ◽  
Bernhard Brüne

Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.



eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Mor Levi-Ferber ◽  
Hai Gian ◽  
Reut Dudkevich ◽  
Sivan Henis-Korenblit

Deciphering effective ways to suppress tumor progression and to overcome acquired apoptosis resistance of tumor cells are major challenges in the tumor therapy field. We propose a new concept by which tumor progression can be suppressed by manipulating tumor cell identity. In this study, we examined the effect of ER stress on apoptosis resistant tumorous cells in a Caenorhabditis elegans germline tumor model. We discovered that ER stress suppressed the progression of the lethal germline tumor by activating the ER stress sensor IRE-1. This suppression was associated with the induction of germ cell transdifferentiation into ectopic somatic cells. Strikingly, transdifferentiation of the tumorous germ cells restored their ability to execute apoptosis and enabled their subsequent removal from the gonad. Our results indicate that tumor cell transdifferentiation has the potential to combat cancer and overcome the escape of tumor cells from the cell death machinery.



2002 ◽  
Vol 64 (12) ◽  
pp. 1745-1751 ◽  
Author(s):  
Huaping Liu ◽  
Niramol Savaraj ◽  
Waldemar Priebe ◽  
Theodore J Lampidis


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 2966-2972 ◽  
Author(s):  
Zhao-Xia Chen ◽  
Miao-Deng Liu ◽  
Deng-Ke Guo ◽  
Mei-Zhen Zou ◽  
Shi-Bo Wang ◽  
...  

A tumor targeting drug delivery system was designed to interfere with lactate metabolism for tumor therapy and anti-metastasis research.



2021 ◽  
Vol 20 (4) ◽  
pp. 73-83
Author(s):  
A. S. Lozhkomoev ◽  
O. V. Bakina ◽  
S. O. Kazantsev ◽  
L. Yu. Ivanova ◽  
A. V. Avgustinovich ◽  
...  

Background. Currently, the use of nanoparticles and nanostructures as components of tumor therapy is the subject of numerous scientific articles. To change the parameters of cell microenvironment in presence of nanoparticles and nanostructures is a promising approach to reducing the tumor cell viability. Aluminum hydroxides and oxides have a number of advantages over other particles due to their porous surface, low toxicity, and thermal stability.The purpose of the study was to investigate the influence of the acid-base properties of aluminum hydroxide structures with different phase composition on the tumor cell viability (Hela, mda, pymt, a549, B16F10).Material and methods. Aln/al nanoparticles were used as a precursor for obtaining structures with various phase compositions. The anoparticles were produced by electric explosion of an aluminum wire in a nitrogen atmosphere. Such nanoparticles interact with water at 60 °Ϲ, resulting in formation of porous nanostructures. They are agglomerates of nanosheets with a planar size of up to 200 nm and a thickness of 5 nm. The phase composition of the structures was varied by the calcination temperature. A change in the phase composition of nanostructures led to a change in the acid-base properties of their surface. To estimate the number of acidic and basic centers on the surface of nanostructures, the adsorption of Hammett indicators was used. The amount of adsorbed dyes was determined spectrophotometrically.Results. It was found that the differences in the acid-base characteristics of the surface of the nanostructures led to a change in their antitumor activity. Γ-al2o3 had 6.5 times more basic centers than acidic ones, which determined its ability to exhibit more pronounced antacid properties, i.e. Longer to neutralize protons secreted by tumor cells. This sample had the highest antitumor activity against all tested cell lines.Conclusion. The antitumor activity of synthesized structures was found to be related not only to an increase in the ph of the cell microenvironment, but also to the ability to maintain the alkalinity of the microenvironment for a longer time due to the adsorption of protons released by tumor cells.



2022 ◽  
Vol 65 (1) ◽  
Author(s):  
Chenghu Wu ◽  
Ailin Yu ◽  
Yue Chen ◽  
Mingbo Fan

AbstractCell membrane vesicles, as delivery carriers of drugs or biological agents in vivo, are an important therapeutic mode in the study of disease treatment. Tumor membrane-derived vesicles have been widely used in tumor therapy because of their good tumor enrichment effect. The most common method is the surface of nanoparticles coated with tumor cell membrane, which can effectively prolong the circulation time of particles in the blood and the enrichment of tumors. In this study, we prepared vesicles of different tumor cell membrane derivate and studied their targeting to tumors detailly. The results showed that homologous vesicles have high targeting to homologous tumor cells. The fluorescence of vesicles in homologous tumor cells was significantly higher than that in other tumor cells. This study will provide a new strategy and guidance for the clinical treatment of cancer based on the tumor cell membrane system. Graphical Abstract



2018 ◽  
Vol 14 ◽  
pp. 2495-2509 ◽  
Author(s):  
Eszter Lajkó ◽  
Sarah Spring ◽  
Rózsa Hegedüs ◽  
Beáta Biri-Kovács ◽  
Sven Ingebrandt ◽  
...  

Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a “second drug” proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.



2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yan-Zi Sun ◽  
Jun-Shan Ruan ◽  
Zong-Sheng Jiang ◽  
Ling Wang ◽  
Shao-Ming Wang

In recent years, the study of extracellular vesicles has been booming across various industries. Extracellular vesicles are considered one of the most important physiological endogenous carriers for the specific delivery of molecular information (nucleonic acid, cytokines, enzymes, etc.) between cells. It has been discovered that they perform a critical role in promoting tumor cell growth, proliferation, tumor cell invasion, and metastatic ability and regulating the tumor microenvironment to promote tumor cell communication and metastasis. In this review, we will discuss (1) the mechanism of extracellular vesicles generation, (2) their role in tumorigenesis and cancer progression (cell growth and proliferation, tumor microenvironment, epithelial-mesenchymal transition (EMT), invasion, and metastasis), (3) the role of extracellular vesicles in immune therapy, (4) extracellular vesicles targeting in tumor therapy, and (5) the role of extracellular vesicles as biomarkers. It is our hope that better knowledge and understanding of the extracellular vesicles will offer a wider range of effective therapeutic targets for experimental tumor research.



2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Jian-ping Dou ◽  
Qiong Wu ◽  
Chang-hui Fu ◽  
Dong-yun Zhang ◽  
Jie Yu ◽  
...  

Abstract Background Developing new strategies to reduce the output power of microwave (MW) ablation while keeping anti-tumor effect are highly desirable for the simultaneous achievement of effective tumor killing and avoidance of complications. We find that mild MW irradiation can significantly increase intracellular Ca2+ concentration in the presence of doxorubicin hydrochloride (DOX) and thus induce massive tumor cell apoptosis. Herein, we designed a synergistic nanoplatform that not only amplifies the intracellular Ca2+ concentration and induce cell death under mild MW irradiation but also avoids the side effect of thermal ablation and chemotherapy. Results The as-made NaCl–DOX@PLGA nanoplatform selectively elevates the temperature of tumor tissue distributed with nanoparticles under low-output MW, which further prompts the release of DOX from the PLGA nanoparticles and tumor cellular uptake of DOX. More importantly, its synergistic effect not only combines thermal ablation and chemotherapy, but also obviously increases the intracellular Ca2+ concentration. Changes of Ca2+ broke the homeostasis of tumor cells, decreased the mitochondrial inner membrane potential and finally induced the cascade of apoptosis under nonlethal temperature. As such, the NaCl–DOX@PLGA efficiently suppressed the tumor cell progression in vivo and in vitro under mild MW irradiation for the triple synergic effect. Conclusions This work provides a biocompatible and biodegradable nanoplatform with triple functions to realize the effective tumor killing in unlethal temperature. Those findings provide reliable solution to solve the bottleneck problem bothering clinics about the balance of thermal efficiency and normal tissue protection.



Sign in / Sign up

Export Citation Format

Share Document