scholarly journals Five Decades Of Petroleum Exploration And Discovery In The Malay Basin (1968-2018) And Remaining Potential

2021 ◽  
Vol 72 ◽  
pp. 63-88
Author(s):  
Mazlan Madon ◽  

Since the first oil discovery in the Malay Basin in 1969, more than 700 exploratory wells have been drilled. To date, there are more than 181 oil and gas discoveries, about half of which are currently in production and about a dozen are already in their secondary or tertiary recovery stages. In 2014 it was estimated that a total of over 14.8 billion barrels of oil equivalent (bboe) of recoverable hydrocarbon resource have been discovered in the basin, contributing to approximately 40% of the total hydrocarbon resources of Malaysia. By the end of the first decade of exploration in 1979, all the major basin-centre anticlinal structures had been tested. This play type contributed 60% of the total discovered resource in the basin. By 1981 this most prolific play type had been practically exhausted, as all the giant fields (those with recoverable resource > 0.5 bboe) had been found. As “creaming” of the basin-centre anticlinal play continued into the early 1980s, exploration efforts gradually shifted to the newly discovered western margin play types, particularly in the Western Hinge Fault Zone, Tenggol Arch and the adjacent Penyu Basin. There was a “lull” period from 1985 to about 1990, due to the global oil crisis, after which exploration was rejuvenated through significant discoveries in several play types on the northeastern ramp margin. This followed a successful drilling campaign that lasted until around 1997 and contributed an additional ~1 bboe of recoverable resources over a seven-year period. Since then, most of the incremental resource addition came from the highly gas-charged play in northern region that comes under the Malaysia-Thai Joint Development Area (JDA) and on the northeastern ramp margin, which includes the Commercial Arrangement Area (CAA) between Malaysia and Vietnam. Individually, however, the hydrocarbon volumes in these later discoveries were relatively small compared to the earlier discovered play types. Subsequently, new play types were pursued, including stratigraphic channels, deeper reservoirs beneath existing fields, high pressure/high temperature (HPHT) reservoirs, overpressured and tight reservoirs, and fractured basement reservoirs. All had some measure of success but none were able to volumetrically match the discoveries made decades earlier. As of end of 2018, over 2100 exploration and development wells had been drilled in the entire basin. Based on the creaming curve, since around 1990 and into the fifth decade of exploration, the incremental resource addition has been increasing steadily at an average rate of ca. 120 MMboe per year. The data indicate that the expected average discovery size would be less than 25 MMboe, and that at least 5 wells need to be drilled per year to sustain the same rate of resource addition. If no new plays are explored and no significant discoveries made, resource addition is expected to plateau beyond 2020. The basin needs a new stimulus, and more importantly, new exploration play concepts to sustain exploration business.

2016 ◽  
Vol 56 (2) ◽  
pp. 578
Author(s):  
John Warburton ◽  
Keiran Wulff

Gas was first discovered by drilling activity in Papua New Guinea in 1956. Nevertheless it was almost 60 years later when the Exxon-operated PNG LNG Project became the first large-scale commercialisation of the country’s prolific gas resources, with export of the first LNG shipment in May 2014. The proven fluvial-deltaic Late Jurassic, early Cretaceous and Tertiary carbonate reservoirs are prolific petroleum producers. When combined with the high-quality liquid-rich nature of the gas and the onshore location, this has resulted in PNG’s LNG projects being some of the lowest cost and most profitable LNG projects globally. The success of the PNG LNG Project along with the substantial identified existing and yet-to-find gas resources has resulted in a recent resurgence of exploration interest in PNG as companies look to expand and capitalise on the country’s developing position as a globally significant LNG supplier. In 2015 Oil Search undertook a whole of country review using its extensive database and in-country knowledge. This study incorporated all well, seismic, surface, remote sensing, production and development data, and has resulted in a detailed understanding of the play distribution and risk ranking, and importantly delineated a number of potentially material new play types in the country. Approximately 4.8 billion barrels of oil equivalent recoverable resources (2P and 2C) have been discovered in PNG to date, of which approximately 85% is gas. The countrywide regional study and common risk segment analysis by Oil Search (2015) established that PNG potentially contains an additional seven billion barrels of oil equivalent resource still to be discovered. The majority of this volume is expected to be gas, estimated to be in the order of 40 trillion cubic feet and 550 million barrels of undiscovered prospective resources. Oil Search has been active in all of PNG’s known petroleum basins since 1929 and built a substantial database. Pool-size distributions and a countrywide prospects and leads inventory suggest discovery of new giant fields is likely and of sufficient scale to support future LNG projects. Six sub-basins contain proven petroleum plays that are predicted to extend into under-explored areas. These areas represent the future petroleum exploration frontier in PNG.


2017 ◽  
Vol 3 (2) ◽  
pp. 177
Author(s):  
Nur Huzeima Mohd Hussain ◽  
Hugh Byrd ◽  
Nur Azfahani Ahmad

Globalisation combined with resources of oil and gas has led to an industrial society in Malaysia.  For the past 30 years, rapid urban growth has shifted from 73% rural to 73% urban population. However, the peak oil crisis and economic issues are threatening the growth of urbanisation and influencing the trends of population mobility. This paper documents the beginnings of a reverse migration (urban-to-rural) in Malaysia.  The method adopted case study that involves questionnaires with the urban migrants to establish the desires, definite intentions and reasons for future migration. Based on this data, it predicts a trend and rate of reverse migration in Malaysia. 


2021 ◽  
Vol 18 (2) ◽  
pp. 323-338
Author(s):  
Xiong-Qi Pang ◽  
Zhuo-Heng Chen ◽  
Cheng-Zao Jia ◽  
En-Ze Wang ◽  
He-Sheng Shi ◽  
...  

AbstractNatural gas hydrate (NGH) has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973. At least 29 global estimates have been published from various studies so far, among which 24 estimates are greater than the total conventional gas resources. If drawn in chronological order, the 29 historical resource estimates show a clear downward trend, reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time. A time series of the 29 estimates was used to establish a statistical model for predict the future trend. The model produces an expected resource value of 41.46 × 1012 m3 at the year of 2050. The statistical trend projected future gas hydrate resource is only about 10% of total natural gas resource in conventional reservoir, consistent with estimates of global technically recoverable resources (TRR) in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches. Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources, only those on the very top of the gas hydrate resource pyramid will be added to future energy supply. It is unlikely that the NGH will be the major energy source in the future.


2021 ◽  
Vol 61 (2) ◽  
pp. 291
Author(s):  
Paul Trotman

In 2020, the liquefied natural gas (LNG) trade saw a modest increase of 1%, which is in contrast to the strong growth of previous years. Recently, the global LNG trade has picked up following the easing of impacts from the pandemic and demand growth in Asia. An increase of 6% in the global LNG trade is expected in 2021 and 2022. Domestic demand for gas remains high, with gas being used both for residential supply and also as an essential feedstock for the manufacturing industry. With a projected domestic gas shortfall, the future exploration and development of oil and gas will play a key role in ensuring access to secure, reliable and affordable energy in the future as well as assisting economic recovery from the pandemic. The importance of remaining an attractive investment destination is essential. Our challenge is to not only strike the balance of being agile and adaptive to market disruptions but also provide robust policy and regulatory frameworks to underpin future investment in the sector. Against this backdrop, this paper provides details of the 2021 offshore petroleum exploration acreage release and information about the ongoing policy work of the department.


2012 ◽  
Vol 30 (5) ◽  
pp. 775-792 ◽  
Author(s):  
Xiuxiang Lü ◽  
Jianfa Han ◽  
Xiang Wang ◽  
Weiwei Jiao ◽  
Hongfeng Yu ◽  
...  

The northern slope of Tazhong palaeo-uplift has become a key target field for petroleum exploration in Tarim Basin. A major breakthrough is made in the Upper Ordovician oil and gas exploration in the west part of northern slope. Oil and gas near the Tazhong I slope-break zone occurred in Liang2 section was dominated by condensate gas reservoir, while oil reservoir was mainly inward distributed in Liang3 section. The crude oils in this region in physical properties characterized by low density, low viscosity, low freezing point, low sulfur content, medium wax content. And the natural gas in chemical components was featured by low-medium nitrogen content, low-medium carbon dioxide content and medium-high hydrogen sulfide content. In the plane direction, oil and gas exhibited a “oil in the interior, gas in the exterior” distribution pattern, and mainly located in a depth range of 0∼60 m below the top of the Liang3 section in the longitudinal direction. The distribution patterns displayed in physical properties and chemical compositions of oil and gas are controlled by multiple influencing factors. The results of above comprehensive studies suggested that vertical overriding of reef-bank-type reservoirs in Liang2 section and karst reservoirs in Liang3 section provided superior reservoir conditions; faults and fractures not only formed reservoir space and improved reservoir quality, also promoted the development of karst reservoirs and provided good migration pathway for hydrocarbon accumulation; one of the nonnegligible factors leading to this kind of distribution pattern for the Upper Ordovician oil and gas reservoirs is shale content in the compact carbonate formation; multi-sources and multi-stages of hydrocarbon filling are absolutely necessary controlling factor for this kind of distribution pattern in the whole block.


10.1144/sp484 ◽  
2020 ◽  
Vol 484 (1) ◽  
pp. NP-NP
Author(s):  
Patrick J. Dowey ◽  
Mark Osborne ◽  
Herbert Volk

Cutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. The demand for petroleum in the form of oil and gas is expected to increase for electricity production, transport and chemical production, largely driven by an increase in energy consumption in the developing world. Innovations in analytical methods will continue to play a key role in the industry moving forwards as society shifts towards lower carbon energy systems and more advantaged oil and gas resources are targeted. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilised to address ongoing challenges in petroleum geoscience.


1994 ◽  
Vol 34 (1) ◽  
pp. 674 ◽  
Author(s):  
Kevin Lanigan ◽  
Shane Hibbird ◽  
Sandy Menpes ◽  
John Torkington

Exploration over Roper Group outcrop in the McArthur Basin prompted Pacific Oil & Gas to investigate the petroleum potential of the Beetaloo Sub-basin, a 15 000 km2 Proterozoic depression concealed beneath Phanerozoic cover. Since 1989 drilling and seismic has identified a broadly flat-lying sequence with uplifted, eroded margins. A 3 500 m composite Proterozoic section consisting of three sandstone-to-mudstone sequences has been drilled. The lower two sequences comprise conformable units of the Mesoproterozoic upper Roper Group and unconformably overlying them is a previously unknown sequence comprising the informally labelled 'Jamison Sandstone' and 'Hayfield Mudstone', probably of Neoproterozoic age.Organic-rich intervals in the Roper Group mudstones range one to three per cent TOC in the Kyalla Member, and two to seven per cent TOC in the 'Middle' Velkerri Formation. Across most of the sub-basin the oil window lies within the Kyalla Member around 900–1350 m, while the 'Middle' Velkerri Formation is around 2 500 m and well into overmaturity, but may still have potential for gas. Potential reservoirs in the Bessie Creek, Moroak and 'Jamison' Sandstones, and in sandy units within the mudstones, are compromised by diagenesis, but porosities of up to 20 per cent and permeabilities of tens and rarely hundreds of millidarcies have been measured. Encouraging shows were observed in many of these intervals, and small quantities of oil and gas have been recovered in drill stem tests. With only a few targets drilled to date, this frontier area requires more exploration before its hydrocarbon potential can be adequately assessed.


1994 ◽  
Vol 34 (1) ◽  
pp. 189
Author(s):  
T. L. Burnett

As economics of the oil and gas industry become more restrictive, the need for new means of improving exploration risks and reducing expenses is becoming more acute. Partnerships between industry and academia are making significant improvements in four general areas: Seismic acquisition, reservoir characterisation, quantitative structural modelling, and geochemical inversion.In marine seismic acquisition the vertical cable concept utilises hydrophones suspended at fixed locations vertically within the water column by buoys. There are numerous advantages of vertical cable technology over conventional 3-D seismic acquisition. In a related methodology, 'Borehole Seismic', seismic energy is passed between wells and valuable information on reservoir geometry, porosity, lithology, and oil saturation is extracted from the P-wave and S-wave data.In association with seismic methods of determining the external geometry and the internal properties of a reservoir, 3-dimensional sedimentation-simulation models, based on physical, hydrologic, erosional and transport processes, are being utilised for stratigraphic analysis. In addition, powerful, 1-D, coupled reaction-transport models are being used to simulate diagenesis processes in reservoir rocks.At the regional scale, the bridging of quantitative structural concepts with seismic interpretation has led to breakthroughs in structural analysis, particularly in complex terrains. Such analyses are becoming more accurate and cost effective when tied to highly advanced, remote-sensing, multi-spectral data acquisition and image processing technology. Emerging technology in petroleum geochemistry, enables geoscientists to infer the character, age, maturity, identity and location of source rocks from crude oil characteristics ('Geochemical Inversion') and to better estimate hydrocarbon-supply volumetrics. This can be invaluable in understanding petroleum systems and in reducing exploration risks and associated expenses.


2019 ◽  
Vol 59 (2) ◽  
pp. 493
Author(s):  
D. Lockhart ◽  
D. Spring

Available data for 2018 indicates that exploration activity is on the rise in Australia, compared to 2017, and this represents a second year of growth in exploration activity in Australia. There has been an increase in area under licence by 92 000 km2, reversing the downward trend in area under licence that commenced in 2014. Since 2016, exploratory drilling within Australia has seen a continued upward trend in both the number of wells drilled and the percentage of total worldwide. Onshore, 77 conventional exploration and appraisal wells were spudded during the year. Offshore, exploration and appraisal drilling matched that seen in 2017, with five new wells spudded: two in the Roebuck Basin, two in the Gippsland Basin and one in the North Carnarvon Basin. Almost 1500 km of 2D seismic and over 10 000 km2 of 3D seismic were acquired within Australia during 2018, accounting for 2.4% and 3.9% of global acquisition, respectively. This represents an increase in the amount of both 2D and 3D seismic acquired in Australia compared with 2017. Once the 2017 Offshore Petroleum Acreage Release was finalised, seven new offshore exploration permits were awarded as a result. A total of 12 bids were received for round one of the 2018 Offshore Petroleum Exploration Release, demonstrating an increase in momentum for offshore exploration in Australia. The permits are in Commonwealth waters off Western Australia, Victoria and the Ashmore and Cartier islands. In June 2018, the Queensland Government announced the release of 11 areas for petroleum exploration acreage in onshore Queensland, with tenders closing in February/March 2019; a further 11 areas will be released in early 2019. The acreage is a mix of coal seam gas and conventional oil and gas. Victoria released five areas in the offshore Otway Basin within State waters. In the Northern Territory, the moratorium on fracking was lifted in April, clearing the way for exploration to recommence in the 2019 dry season. With the increase in exploration has come an increase in success, with total reserves discovered within Australia during 2018 at just under 400 million barrels of oil equivalent, representing a significant increase from 2017. In 2018, onshore drilling resulted in 18 new discoveries, while offshore, two new discoveries were made. The most notable exploration success of 2018 was Dorado-1 drilled in March by Quadrant and Carnarvon Petroleum in the underexplored Bedout Sub-basin. Dorado is the largest oil discovery in Australia of 100 million barrels, or over, since 1996 and has the potential to reinvigorate exploration in the region.


Sign in / Sign up

Export Citation Format

Share Document