scholarly journals THE USE OF SOLAR ENERGY IN CROATIA

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ljubomir Majdandžić

The Europeans are still facing extraordinary challenges and uncertainties in their daily lives to the extent that all efforts will still focus on protecting citizens and overcoming the crisis. The COVID-19 poses a challenge to Europe on a historical scale. At the request of Heads of State or Governments, the European Commission has presented a comprehensive package combining the future Multiannual Financial Framework (MFF) and specific recovery efforts within the next generation EU (NGEU). The EU's Next Generation Fund (NGEU) represents the European Union's recovery package to support Member States affected by the COVID-19 pandemic. The fund was approved by the European Council on July 21, 2020, and is worth €750 billion. The NGEU fund covers the period 2021 – 2023 and will be linked to the regular EU budget (MFF) from 2021 to 2027. The comprehensive NGEU and VFO packages are projected to reach €1,824.3 billion. Most of the investment relates to the reforms and investments regarding green and digital transition. To achieve the European Green Plan and the next generation EU plan, policies related to clean energy supply in the economy, industry, general production and consumption, infrastructure, transport, agriculture, construction, etc., need to be reconsidered. In the light of all the above mentioned, and to achieve the green and digital transition, one of the significant areas in Croatia is the use of renewable energy sources, especially solar energy, which will be discussed in more detail in this paper.

2020 ◽  
Vol 6 (2) ◽  
pp. 76-85
Author(s):  
Nur Hafeizza Ramly

Emergency Portable Solar Power Supply is a product which uses renewable energy sources as the main sources of electricity which is sunlight. According to World Energy Outlook (WEO) 2018, the percentage of renewable energy used as a source to generate electricity grew by 17% higher than the 10-year average and solar energy contributed more than a third despite accounting for just 21% of the total. The main objective of this product is to create clean energy emergency portable solar power supply by using non-conventional energy source and green technology which can be used during any contingency happens and also for the usage for rural area with non-electric power source. This project was started by calculation of the system design for determining the characteristic that need to be used for all components that related to this solar system such as battery, charge controller, solar panel and etc. The overall system of this portable solar power supply is 12V system. This design can last for 2 days without charging and the minimum hour for the battery to be charged is around 6 hours. This product can supply maximum up to 100W of DC and AC power supply. In a conclusion, this product is very portable and greener product the usage of solar energy as the main sources to generate electricity.


2021 ◽  
Vol 16 ◽  
pp. 61-66
Author(s):  
Hajji Abdelghani ◽  
Lahlou Yahya ◽  
Abbou Ahmed

To lower the production of greenhouse gases while covering energy needs, it is necessary to exploit renewable energies in the urban environment and manage energy production and consumption as well. In this work, we interested in the study of a house using renewable energy sources such as photovoltaic (PV) panels, thermal panels and wind turbines (WT). The energy consumption happens through electrical charges like the refrigerator, the heat pump, the lighting... The main objective of this work is to change the operating time of secondary loads and to propose an energy management algorithm. Firstly, we will model the consumption of electrical charges and move the operation of secondary charges to moderate the consumed energy. Finally, we suggested an algorithm to manage and optimize energy production and consumption. The results show that the displacement of secondary loads reduces over 8.5% of the energy bill and the suggested algorithm optimizes the operation of the energy production equipment while covering the energy needs of the inhabitants.


Author(s):  
Jakub Edward Zaleski

Abstract This article is focused on analysing the present state of renewable electricity production and consumption coverage in Germany, concentrating on the intermittence of wind and solar energy production and considering the significance of the wind silence phenomenon. The development and promotion of renewable energy is a major goal set out by politicians of which one example is the German plan “Energiewende”. The author examines wind and solar energy complementarity and attempts assessing the possibility of basing Germanys’ electricity production on renewable energy sources, without significant advancements in technology and changes in consumer behaviour. Using the analysis based on hourly data of consumption and production by source of electricity in Germany in 2016, the research addresses the issues of renewable energy source effectiveness, intermittence and points to the critical matter of periodical unavailability of wind and solar energy.


Author(s):  
Ítalo Pedro Santos de Oliveira ◽  
Livia Da Silva Oliveira ◽  
David Barbosa de Alencar ◽  
Manoel Henrique Reis Nascimento

The rational use of electricity is practically mandatory, due to the current moment in which the country crosses, mainly due to the reduced reservoir levels of the hydroelectric plants, and where there are high costs in the production of its fuel inputs. fossil fuels, and recent tariff adjustments that the government has been approving year after year, making conventional energy increasingly expensive in the country. Companies and households focus on looking for ways to dodge electricity inflation through clean and renewable energy sources, as is the case here, of photovoltaic solar energy. Aiming to supply about 70% of the electricity bill of a Company of the Manaus-AM Industrial Pole, this work proposes a 288 KWp photovoltaic solar system, consisting of 900 330 W photovoltaic panels, accompanied by 10 Inverters. 30 KW each, connected to the Amazonas Energia Distribution Network, featuring an On-grid solar system, and becoming the largest executed solar energy project in the Amazon and Northern Brazil. The implementation of the system seeks to make feasible and solve the high cost of the electric bill with the application of a solar system, and analyze its investment, financial return and clean energy generation for the next 25 years.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


2020 ◽  
Vol 1 (2) ◽  
pp. 189-193
Author(s):  
Aisha Naiga ◽  
Loyola Rwabose Karobwa

Over 90% of Uganda's power is generated from renewable sources. Standardised Implementation Agreements and Power Purchase Agreements create a long-term relationship between Generating Companies and the state-owned off-taker guaranteed by Government. The COVID-19 pandemic and measures to curb the spread of the virus have triggered the scrutiny and application of force majeure (FM) clauses in these agreements. This article reviews the FM clauses and considers their relevance. The authors submit that FM clauses are a useful commercial tool for achieving energy justice by ensuring the continuity of the project, despite the dire effects of the pandemic. Proposals are made for practical considerations for a post-COVID-19 future which provides the continued pursuit of policy goals of promoting renewable energy sources and increasing access to clean energy, thus accelerating just energy transitions.


Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.


2018 ◽  
Vol 1 (2) ◽  
pp. 40-51 ◽  
Author(s):  
Muhammad Burhan ◽  
Muhammad Wakil Shahzad ◽  
Kim Choon Ng

Standalone power systems have vital importance as energy source for remote area. On the other hand, a significant portion of such power production is used for cooling purposes. In this scenario, renewable energy sources provide sustainable solution, especially solar energy due to its global availability. Concentrated photovoltaic (CPV) system provides highest efficiency photovoltaic technology, which can operate at x1000 concentration ratio. However, such high concentration ratio requires heat dissipation from the cell area to maintain optimum temperature. This paper discusses the size optimization algorithm of sustainable cooling system using CPVT. Based upon the CPV which is operating at x1000 concentration with back plate liquid cooling, the CPVT system size is optimized to drive a hybrid mechanical vapor compression (MVC) chiller and adsorption chiller, by utilizing both electricity and heat obtained from the solar system. The electrolysis based hydrogen is used as primary energy storage system along with the hot water storage tanks. The micro genetic algorithm (micro-GA) based optimization algorithm is developed to find the optimum size of each component of CPVT-Cooling system with uninterrupted power supply and minimum cost, according to the developed operational strategy. The hybrid system is operated with solar energy system efficiency of 71%.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4148
Author(s):  
Estrella Trincado ◽  
Antonio Sánchez-Bayón ◽  
José María Vindel

After the Great Recession of 2008, there was a strong commitment from several international institutions and forums to improve wellbeing economics, with a switch towards satisfaction and sustainability in people–planet–profit relations. The initiative of the European Union is the Green Deal, which is similar to the UN SGD agenda for Horizon 2030. It is the common political economy plan for the Multiannual Financial Framework, 2021–2027. This project intends, at the same time, to stop climate change and to promote the people’s wellness within healthy organizations and smart cities with access to cheap and clean energy. However, there is a risk for the success of this aim: the Jevons paradox. In this paper, we make a thorough revision of the literature on the Jevons Paradox, which implies that energy efficiency leads to higher levels of consumption of energy and to a bigger hazard of climate change and environmental degradation.


Sign in / Sign up

Export Citation Format

Share Document