scholarly journals Evaluation of buriti endocarp as lignocellulosic substrate for second generation ethanol production

Author(s):  
Plínio R Rodrigues ◽  
Mateus FL Araújo ◽  
Tamarah L Rocha ◽  
Ronnie Von S Veloso ◽  
Lílian A Pantoja ◽  
...  

The production of lignocellulosic ethanol is one of the most promising alternatives to fossil fuels, however, this technology still faces many challenges related to the viability of the alcohol in the market. In this paper the endocarp of buriti fruit was assessed for ethanol production. The whole fruit was characterized physically and chemically and its endocarp submitted to acid and alkaline pre-treatments, which were optimized through the use of surface response methodology for removal of hemicellulose and lignin, respectively. Hemicellulose content was reduced by 88% after acid pretreatment. Alkaline pre-treatment reduced the lignin content in the recovered biomass from 11.8% to 4.2% and increased the concentration of the cellulosic fraction to 88.5%. The pre-treated biomass was saccharified by the action of cellulolytic enzymes and, in the optimized condition, was able to produce 110 g of glucose per L of hydrolyzate. Alcoholic fermentation of the enzymatic hydrolyzate bio-catalized by Saccharomyces cerevisiae resulted in a fermented medium with 4.3% ethanol and YP/S of 0.33.

2018 ◽  
Author(s):  
Plínio R Rodrigues ◽  
Mateus FL Araújo ◽  
Tamarah L Rocha ◽  
Ronnie Von S Veloso ◽  
Lílian A Pantoja ◽  
...  

The production of lignocellulosic ethanol is one of the most promising alternatives to fossil fuels, however, this technology still faces many challenges related to the viability of the alcohol in the market. In this paper the endocarp of buriti fruit was assessed for ethanol production. The whole fruit was characterized physically and chemically and its endocarp submitted to acid and alkaline pre-treatments, which were optimized through the use of surface response methodology for removal of hemicellulose and lignin, respectively. Hemicellulose content was reduced by 88% after acid pretreatment. Alkaline pre-treatment reduced the lignin content in the recovered biomass from 11.8% to 4.2% and increased the concentration of the cellulosic fraction to 88.5%. The pre-treated biomass was saccharified by the action of cellulolytic enzymes and, in the optimized condition, was able to produce 110 g of glucose per L of hydrolyzate. Alcoholic fermentation of the enzymatic hydrolyzate bio-catalized by Saccharomyces cerevisiae resulted in a fermented medium with 4.3% ethanol and YP/S of 0.33.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5275
Author(s):  
Plínio R. Rodrigues ◽  
Mateus F.L. Araújo ◽  
Tamarah L. Rocha ◽  
Ronnie Von S. Veloso ◽  
Lílian A. Pantoja ◽  
...  

The production of lignocellulosic ethanol is one of the most promising alternatives to fossil fuels; however, this technology still faces many challenges related to the viability of the lignocellulosic alcohol in the market. In this paper the endocarp of buriti fruit was assessed for ethanol production. The fruit endocarp was characterized physically and chemically. Acid and alkaline pre-treatments were optimized by surface response methodology for removal of hemicellulose and lignin from the biomass. Hemicellulose content was reduced by 88% after acid pretreatment. Alkaline pre-treatment reduced the lignin content in the recovered biomass from 11.8% to 4.2% and increased the concentration of the cellulosic fraction to 88.5%. The pre-treated biomass was saccharified by the action of cellulolytic enzymes and, under optimized conditions, was able to produce 110 g of glucose per L of hydrolyzate. Alcoholic fermentation of the enzymatic hydrolyzate performed by Saccharomyces cerevisiae resulted in a fermented medium with 4.3% ethanol and a yield of product per substrate (YP/S) of 0.33.


2016 ◽  
Vol 206 ◽  
pp. 86-92 ◽  
Author(s):  
Ping Li ◽  
Di Cai ◽  
Zhangfeng Luo ◽  
Peiyong Qin ◽  
Changjing Chen ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 98-107
Author(s):  
Galileo E. Araguirang ◽  
Arianne Joyce R. Arizala ◽  
Eden Beth B. Asilo ◽  
Jamie Louise S. Batalon ◽  
Erin B. Bello ◽  
...  

Banana (M. acuminata x balbisiana) is an abundant lignocellulosic waste material in large plantations all over the Philippines, especially in Mindanao, which can be utilized as substrate in producing high-value products like ethanol. To compensate for the low yield based on total weight of substrate due to the high moisture content of banana pseudostem, there is the primary challenge to make the conversion of this lignocellulosic biomass into monomeric sugar and then into ethanol more efficiently in order to achieve yields that would make it cost-competitive. Hence, this study evaluated the effects of solid loading, incubation time and amount of enzyme on yield of reducing sugars in the enzymatic hydrolysis process and attempted to optimize the significant factors by Response Surface Methodology (RSM), specifically using Box-Behnken design. There was significant improvement on the reducing sugar yield of the pretreated banana pseudostem at 20 h incubation time, 15 g solid loading and 0.55 % enzyme concentration. Ethanol production was observed to be higher in the detoxified substrate although biomass was higher for the non-detoxified substrate. As to our knowledge, the present study is the first attempt to produce second generation ethanol using banana pseudostem waste as feedstock in the Philippines.


2021 ◽  
Vol 55 (5-6) ◽  
pp. 629-635
Author(s):  
AMINA ALLOUACHE ◽  
AZIZA MAJDA ◽  
AHMED ZAID TOUDERT ◽  
ABDELTIF AMRANE ◽  
MERCEDES BALLESTEROS

Nowadays, the use of biofuels has become an unavoidable solution to the depletion of fossil fuels and global warming. The controversy over the use of food crops for the production of the first-generation biofuels and deforestation caused by the second-generation ones has forced the transition to the third generation of biofuels, which avoids the use of arable land and edible products, and does not threaten biodiversity. This generation is based on the marine and freshwater biomass, which has the advantages of being abundant or even invasive, easy to cultivate and having a good energetic potential. Bioethanol production from Ulva lactuca, a local marine macroalgae collected from the west coast of Algiers, was examined in this study. Ulva lactuca showed a good energetic potential due to its carbohydrate-rich content: 9.57% of cellulose, 6.9% of hemicellulose and low lignin content of 5.11%. Ethanol was produced following the separate hydrolysis and fermentation process (SHF), preceded by a thermal acid pretreatment at 120 °C during 15 min. Enzymatic hydrolysis was performed using a commercial cellulase (Celluclast 1.5 L), which saccharified the cellulose contained in the green seaweed, releasing about 85.01% of the total glucose, corresponding to 7.21 g/L after 96 h of enzymatic hydrolysis at pH 5 and 45 °C. About 3.52 g/L of ethanol was produced after 48 h of fermentation using Saccharomyces cerevisiae at 30 °C and pH 5, leading to a high ethanol yield of 0.41 g of ethanol/g of glucose.


2021 ◽  
Vol 51 (11) ◽  
Author(s):  
Camila da Silva Turini ◽  
Roberta Martins Nogueira ◽  
Evaldo Martins Pires ◽  
Juliana da Silva Agostini

ABSTRACT: Over post-harvest steps of rice, from pre-cleaning to processing, a large amount of by-product is generated. Some of these by-products, due to their high starch and fiber content can be used in ethanol production. The objective was to evaluate the effect of enzymatic hydrolysis conditions on the production of reducing sugars, from pre-cleaning residue and type III paddy rice, as well as the effect of the pre-treatment of its fibers, targeting the use of these residues in ethanol fuel production. The proximate analysis was performed, followed by the pre-treatment of samples. Enzymatic hydrolysis was conducted in two ways: using one enzyme at a time or applying them simultaneously. The starch content was 41.18 and 53.41%; the fibers were 30.44 and 23.39%, of which 6.53 and 4.41% were lignin, for the pre-cleaning residue and paddy rice, respectively. Alkaline pre-treatment reduce lignin content by 47.94 and 18.23% for the pre-cleaning residue and type III paddy rice, respectively. Hydrolysis efficiency was 22.61 and 15.32% for the cellulase enzyme, and 82.18 and 87.07% for the amylolytic enzymes in the pre-cleaning residue and type III paddy rice, respectively. The hydrolysis with the separated enzymes presented higher reducing sugar yields. Therefore, the pre-cleaning residue and type III paddy rice can be used for ethanol production by its enzymatic hydrolysis, aiming to add value and to increase the sustainability of the rice production chain.


Bio-ethanol, a type of biofuel, is known as renewable energy source as it is derived from biomass as its raw material. Biomass can be found in abundance and sustainable i.e. sources are available continuously, unlike the currently used conventional fossil fuels where these sources are limited and depleting. In this study, biomass from fruit waste, banana peels, were utilized to produce bio-ethanol via hydrolysis and fermentation process. Banana peels, a lignocellulosic biomass, possesses compositions which favour these processes, where the banana peels are rich in cellulose content and low in lignin content. Mechanical pre-treatment of the banana peels was conducted to further ease the hydrolysis process by reducing the particle size of the biomass. Hydrolysis was carried out for 24 hours at 50ºC at different pH using sulfuric acid H2SO4 acid and sodium hydroxide NaOH as the base, to study the effect of pH on the hydrolysis process and hence the final bio-ethanol production, in terms of concentration. Fermentation of the hydrolysis products were carried out using glucose-yeast broth for 4 days at temperature of 35ºC. Water content in the bio-ethanol product from fermentation process was separated using rotary evaporator, prior to ethanol analysis using Gas Chromatography (GC-MS). Concentration of ethanol was found to be the highest at acidic pH conditions; pH 4 to 6. Lowest ethanol concentration was recorded at higher pH values, indicating alkaline conditions do not favour the hydrolysis process.


Author(s):  
Aissata Ousmane Kane ◽  
Vanessa O. Arnoldi Pellergini ◽  
Melissa C. Espirito Santo ◽  
Balla Diop Ngom ◽  
José M. García ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 741
Author(s):  
Doinita-Roxana Cioroiu Tirpan ◽  
Ancaelena Eliza Sterpu ◽  
Claudia Irina Koncsag ◽  
Alina Georgiana Ciufu ◽  
Tănase Dobre

The aim of this study is to evaluate the potential of dried Cystoseira barbata alga for ethanol production through alcoholic fermentation. The influence of the main factors affecting the fermentation are studied in the frame of a 23 factorial experimental plan. The main factors influencing the process are the fermentation temperature (t from 25 °C to 35 °C), the solid to liquid ratio (S/L from 0.040 g/g to 0.080 g/g), and the cellulase ratio (R from 8 U/g d.m to 16 U/g d.m.). The maximum volatile compounds yield of 0.2808 g/g d.m and ethanol yield of 0.0158 g/g d.m were favored by the following experimental conditions: process temperature of 35 °C, solid to liquid ratio of 0.0415, and enzyme ratio of 16 U/g d.m. A statistical model was used to correlate the product yield with the process factors. Additionally, 19 interesting bioactive compounds were found in the enzymatic hydrolysis and alcoholic fermentation broths which seem likely to maintain natural defence mechanisms against diseases and physical disorders.


Sign in / Sign up

Export Citation Format

Share Document