scholarly journals In silico experiments validate that twenty nucleotide spacer sequence provides precise targeting of bacterial genes in CRISPR-Cas9

Author(s):  
Wenfa Ng

As a genome editing tool useful for modulating the expression of different genes, CRISPR-Cas9 is known for its precision in targeting specific genes. To do this, CRISPR-Cas9 utilizes a guide RNA for guiding the Cas9 endonuclease to specific stretches of the DNA for genome editing or modulation of gene expression. Guide RNA comprises a spacer sequence and a protospacer adjacent motif (PAM) sequence. Both components work together to help target Cas9 to a specific stretch of DNA within a gene. In particular, spacer sequence provides a unique address for localizing Cas9 to specific stretch of DNA. But, possibility exists that there could be off-target effects for particular spacer sequence used in guide RNA. Specifically, spacer sequence might engage in complementary base pairing with other stretches of DNA in the bacterial genome, and result in additional genome editing or modulation of gene expression at genes that are not targeted. Results from an in silico experiment conducted with the rpoH gene of Pseudomonas aeruginosa PAO1 revealed that all spacer sequences derived from different stretches of the rpoH gene did not elicit off-target effects in the genome of the bacterium. This concurs with theoretical predictions that the probability of off-target effects from a 20 nucleotide long spacer region is vanishingly small. Hence, a 20 nucleotide spacer sequence in guide RNA should provide a unique DNA address for precise targeting of specific gene in the genome of a bacterium. Collectively, off-target effects of CRISPR-Cas9 is a valid concern for both genetic engineering and genome editing applications as targeting of additional genes from the desired one would result in unpredictable physiological and biochemical impacts on the cell. Using the rpoH gene of Pseudomonas aeruginosa PAO1 as example, results from an in silico experiment examining possible off-target effects of different 20 nucleotide spacer sequence able to target the sense and antisense strand of the gene revealed no off-target effects. Specifically, each spacer sequence used could only target the intended rpoH gene, which concurs with theoretical predictions of vanishingly small possibility of off-target effects on a bacterial genome from a 20 nucleotide spacer sequence. Overall, the results highlight that use of a 20 nucleotide spacer sequence in guide RNA could offer precise targeting of specific gene in a bacterium.

2019 ◽  
Author(s):  
Wenfa Ng

As a genome editing tool useful for modulating the expression of different genes, CRISPR-Cas9 is known for its precision in targeting specific genes. To do this, CRISPR-Cas9 utilizes a guide RNA for guiding the Cas9 endonuclease to specific stretches of the DNA for genome editing or modulation of gene expression. Guide RNA comprises a spacer sequence and a protospacer adjacent motif (PAM) sequence. Both components work together to help target Cas9 to a specific stretch of DNA within a gene. In particular, spacer sequence provides a unique address for localizing Cas9 to specific stretch of DNA. But, possibility exists that there could be off-target effects for particular spacer sequence used in guide RNA. Specifically, spacer sequence might engage in complementary base pairing with other stretches of DNA in the bacterial genome, and result in additional genome editing or modulation of gene expression at genes that are not targeted. Results from an in silico experiment conducted with the rpoH gene of Pseudomonas aeruginosa PAO1 revealed that all spacer sequences derived from different stretches of the rpoH gene did not elicit off-target effects in the genome of the bacterium. This concurs with theoretical predictions that the probability of off-target effects from a 20 nucleotide long spacer region is vanishingly small. Hence, a 20 nucleotide spacer sequence in guide RNA should provide a unique DNA address for precise targeting of specific gene in the genome of a bacterium. Collectively, off-target effects of CRISPR-Cas9 is a valid concern for both genetic engineering and genome editing applications as targeting of additional genes from the desired one would result in unpredictable physiological and biochemical impacts on the cell. Using the rpoH gene of Pseudomonas aeruginosa PAO1 as example, results from an in silico experiment examining possible off-target effects of different 20 nucleotide spacer sequence able to target the sense and antisense strand of the gene revealed no off-target effects. Specifically, each spacer sequence used could only target the intended rpoH gene, which concurs with theoretical predictions of vanishingly small possibility of off-target effects on a bacterial genome from a 20 nucleotide spacer sequence. Overall, the results highlight that use of a 20 nucleotide spacer sequence in guide RNA could offer precise targeting of specific gene in a bacterium.


2001 ◽  
Vol 183 (19) ◽  
pp. 5529-5534 ◽  
Author(s):  
Marvin Whiteley ◽  
E. P. Greenberg

ABSTRACT The LasR-dependent and RhlR-dependent quorum-sensing systems are global regulators of gene expression in Pseudomonas aeruginosa. Previous studies have demonstrated that promoter elements of the quorum-sensing-controlled genes lasB andhcnABC are important in density-dependent regulation. We have identified LasR- and RhlR-dependent determinants in promoters of quorum-sensing-controlled genes qsc102, qsc117 (acpP), and qsc131 (phzA to -G) by in silico, deletion, point-mutational, and primer extension analyses. Each of these genes (in addition tolasI and rsaL) is activated by LasR, and qsc117 and qsc131 also respond to RhlR. Point mutations in the promoters of the LasR-specific gene, qsc102, relax specificity so that this promoter can respond to RhlR in addition to LasR. Our findings indicate that quorum-sensing-controlled promoters in P. aeruginosa are either specific for LasR or respond to both LasR and RhlR and that critical bases in the promoter elements determine specificity.


2020 ◽  
Vol 117 (31) ◽  
pp. 18424-18430 ◽  
Author(s):  
Emily K. Bowman ◽  
Matthew Deaner ◽  
Jan-Fang Cheng ◽  
Robert Evans ◽  
Ernst Oberortner ◽  
...  

Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model ofSaccharomyces cerevisiae’s metabolic network. When coupled with a CRISPR-dCas9–based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes. We utilized this approach in two case studies: growth enrichment on alternative sugars, glycerol and galactose, and chemical overproduction of betaxanthins, leading to the identification of unique gene targets. In particular, we identify essential genes and other targets that were missed by classic genetic approaches.


2019 ◽  
Vol 17 (7) ◽  
pp. 1302-1315 ◽  
Author(s):  
Ning Jiang ◽  
Chao Zhang ◽  
Jun‐Ying Liu ◽  
Zhi‐Hong Guo ◽  
Zong‐Ying Zhang ◽  
...  

2019 ◽  
Author(s):  
Mahmudur Rahman Hera ◽  
Amatur Rahman ◽  
Atif Rahman

AbstractGenome editing using the CRISPR/Cas9 system requires designing guide RNAs (sgRNA) that are efficient and specific. Guide RNAs are usually designed using reference genomes which limits their use in organisms with no or incomplete reference genomes. Here, we present kRISP-meR, a reference free method to design sgRNAs for CRISPR/Cas9 system. kRISP-meR takes as input a target region and sequenced reads from the organism to be edited and generates sgRNAs that are likely to minimize off-target effects. Our analysis indicates that kRISP-meR is able to identify majority of the guides identified by a widely used sgRNA designing tool, without any knowledge of the reference, while retaining specificity.


2018 ◽  
Author(s):  
Pinar Akcakaya ◽  
Maggie L. Bobbin ◽  
Jimmy A. Guo ◽  
Jose M. Lopez ◽  
M. Kendell Clement ◽  
...  

CRISPR-Cas genome-editing nucleases hold substantial promise for human therapeutics1–5 but identifying unwanted off-target mutations remains an important requirement for clinical translation6, 7. For ex vivo therapeutic applications, previously published cell-based genome-wide methods provide potentially useful strategies to identify and quantify these off-target mutation sites8–12. However, a well-validated method that can reliably identify off-targets in vivo has not been described to date, leaving the question of whether and how frequently these types of mutations occur. Here we describe Verification of In Vivo Off-targets (VIVO), a highly sensitive, unbiased, and generalizable strategy that we show can robustly identify genome-wide CRISPR-Cas nuclease off-target effects in vivo. To our knowledge, these studies provide the first demonstration that CRISPR-Cas nucleases can induce substantial off-target mutations in vivo, a result we obtained using a deliberately promiscuous guide RNA (gRNA). More importantly, we used VIVO to show that appropriately designed gRNAs can direct efficient in vivo editing without inducing detectable off-target mutations. Our findings provide strong support for and should encourage further development of in vivo genome editing therapeutic strategies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244864
Author(s):  
Carlos Mora-Martinez

Large amounts of effort have been invested in trying to understand how a single genome is able to specify the identity of hundreds of cell types. Inspired by some aspects of Caenorhabditis elegans biology, we implemented an in silico evolutionary strategy to produce gene regulatory networks (GRNs) that drive cell-specific gene expression patterns, mimicking the process of terminal cell differentiation. Dynamics of the gene regulatory networks are governed by a thermodynamic model of gene expression, which uses DNA sequences and transcription factor degenerate position weight matrixes as input. In a version of the model, we included chromatin accessibility. Experimentally, it has been determined that cell-specific and broadly expressed genes are regulated differently. In our in silico evolved GRNs, broadly expressed genes are regulated very redundantly and the architecture of their cis-regulatory modules is different, in accordance to what has been found in C. elegans and also in other systems. Finally, we found differences in topological positions in GRNs between these two classes of genes, which help to explain why broadly expressed genes are so resilient to mutations. Overall, our results offer an explanatory hypothesis on why broadly expressed genes are regulated so redundantly compared to cell-specific genes, which can be extrapolated to phenomena such as ChIP-seq HOT regions.


2019 ◽  
Vol 20 (15) ◽  
pp. 3719 ◽  
Author(s):  
Zahra Hajiahmadi ◽  
Ali Movahedi ◽  
Hui Wei ◽  
Dawei Li ◽  
Yasin Orooji ◽  
...  

The CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeat-associated protein 9) is a powerful genome-editing tool in animals, plants, and humans. This system has some advantages, such as a high on-target mutation rate (targeting efficiency), less cost, simplicity, and high-efficiency multiplex loci editing, over conventional genome editing tools, including meganucleases, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs). One of the crucial shortcomings of this system is unwanted mutations at off-target sites. We summarize and discuss different approaches, such as dCas9 and Cas9 paired nickase, to decrease the off-target effects in plants. According to studies, the most effective method to reduce unintended mutations is the use of ligand-dependent ribozymes called aptazymes. The single guide RNA (sgRNA)/ligand-dependent aptazyme strategy has helped researchers avoid unwanted mutations in human cells and can be used in plants as an alternative method to dramatically decrease the frequency of off-target mutations. We hope our concept provides a new, simple, and fast gene transformation and genome-editing approach, with advantages including reduced time and energy consumption, the avoidance of unwanted mutations, increased frequency of on-target changes, and no need for external forces or expensive equipment.


2021 ◽  
Vol 16 ◽  
Author(s):  
Mohsin Ali Nasir ◽  
Samia Nawaz ◽  
Jia Huang

: Clustered regularly interspaced short palindromic repeats along with CRISPR-associated protein mechanisms preserve the memory of previous experiences with DNA invaders, in particular spacers that are embedded in CRISPR arrays between coordinate repeats. There has been a fast progression in the comprehension of this immune system and its implementations; however, there are numerous points of view that anticipate explanations to make the field an energetic research zone. The efficiency of CRISPR-Cas depends on well considered single guide RNA. For this purpose, many bioinformatics methods and tools were created to support the design of greatly active and precise single guide RNA. In-silico single guide RNA architecture is a crucial point for effective gene editing by means of the CRISPR technique. Persistent attempts are prepared to improve in-silico single guide RNA formulation by great on-target effectiveness and decreased off-target effects. This review offers a summary of the CRISPR computational tools to help different researchers to pick a specific tool for their work according to their pros and cons, along with new thoughts to make new computational tools to overcome all existing limitations.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Luhan Yang ◽  
Dennis Grishin ◽  
Gang Wang ◽  
John Aach ◽  
Cheng-Zhong Zhang ◽  
...  

Abstract CRISPR/Cas9 has demonstrated a high-efficiency in site-specific gene targeting. However, potential off-target effects of the Cas9 nuclease represent a major safety concern for any therapeutic application. Here, we knock out the Tafazzin gene by CRISPR/Cas9 in human-induced pluripotent stem cells with 54% efficiency. We combine whole-genome sequencing and deep-targeted sequencing to characterise the off-target effects of Cas9 editing. Whole-genome sequencing of Cas9-modified hiPSC clones detects neither gross genomic alterations nor elevated mutation rates. Deep sequencing of in silico predicted off-target sites in a population of Cas9-treated cells further confirms high specificity of Cas9. However, we identify a single high-efficiency off-target site that is generated by a common germline single-nucleotide variant (SNV) in our experiment. Based on in silico analysis, we estimate a likelihood of SNVs creating off-target sites in a human genome to be ~1.5–8.5%, depending on the genome and site-selection method, but also note that mutations might be generated at these sites only at low rates and may not have functional consequences. Our study demonstrates the feasibility of highly specific clonal ex vivo gene editing using CRISPR/Cas9 and highlights the value of whole-genome sequencing before personalised CRISPR design.


Sign in / Sign up

Export Citation Format

Share Document