scholarly journals The protective effect of different extracts of aerial parts of Artemisia ciniformis against H2O2-induced oxidative stress and apoptosis in PC12 pheochromocytoma cells

2019 ◽  
Vol 9 (4) ◽  
pp. 16-23
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ji Yeon Lee ◽  
Jeong-Yong Park ◽  
Dong Hwi Kim ◽  
Hyung Don Kim ◽  
Yun-Jeong Ji ◽  
...  

Reactive oxygen species (ROS), associated with oxidative stress, are involved in many biological processes such as apoptosis, necrosis, and autophagy. Oxidative stress might induce neuronal damage via ROS generation, causing neurodegenerative diseases. Erigeron annuus (EA) has antioxidant properties and could protect neurons from oxidative stress. In this study, we investigated the protective effect of the aerial parts (EAA) and flowers (EAF) from EA on ROS-mediated apoptosis in pheochromocytoma 12 cells. We quantified 18 types of phenolic compounds using high-performance liquid chromatography. Pretreatment of the cells with EAA and EAF attenuated ROS generation and induced the expression of antioxidant enzymes such as superoxide dismutase 2, catalase, and glutathione peroxidase. In addition, EAF reduced the expression of apoptotic proteins such as Bax/Bcl-xL, caspase-3, and caspase-8 to a greater extent than that with EAA. These results suggested that the protective effect of EAF against oxidative stress-induced apoptosis might be due to the prevention of ROS generation mediated by oxidative enzymes.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S51
Author(s):  
ANKE-PEGGY HOLTORF ◽  
K. UNSICKER ◽  
H.-D. HOFMANN

2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  

2012 ◽  
Vol 32 (1) ◽  
pp. 88-91
Author(s):  
Zhi-yong WANG ◽  
Ling-zhen TANG ◽  
Tian-wen GAO

2020 ◽  
Vol 18 (3) ◽  
pp. 260-265
Author(s):  
Xu Lin ◽  
Zheng Xiaojun ◽  
Lv Heng ◽  
Mo Yipeng ◽  
Tong Hong

The purpose of this study was to evaluate the protective effect of swertiamarin on heart failure. To this end, a rat model of heart failure was established via left coronary artery ligation. Infarct size of heart tissues was determined using triphenyl tetrazolium chloride staining. Echocardiography was performed to evaluate cardiac function by the determination of ejection fraction, left ventricular internal dimension in diastole and left ventricular internal dimension in systole. The effect of swertiamarin on oxidative stress was evaluated via enzyme-linked immunosorbent assay. The mechanism was evaluated using western blot. Administration of swertiamarin reduced the infarct size of heart tissues in rat models with heart failure. Moreover, swertiamarin treatment ameliorated the cardiac function, increased ejection fraction and fractional shortening, decreased left ventricular internal dimension in diastole and left ventricular internal dimension in systole. Swertiamarin improved oxidative stress with reduced malondialdehyde, while increased superoxide dismutase, glutathione, and GSH peroxidase. Furthermore, nuclear-factor erythroid 2-related factor 2, heme oxygenase and NAD(P)H dehydrogenase (quinone 1) were elevated by swertiamarin treatment in heart tissues of rat model with heart failure. Swertiamarin alleviated heart failure through suppression of oxidative stress response via nuclear-factor erythroid 2-related factor 2/heme oxygenase-1 pathway providing a novel therapeutic strategy for heart failure.


Sign in / Sign up

Export Citation Format

Share Document