scholarly journals Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-Ggel method

2020 ◽  
Vol 69 (22) ◽  
pp. 228102-228102
Author(s):  
Liu Xian-Zhe ◽  
◽  
Zhang Xu ◽  
Tao Hong ◽  
Huang Jian-Lang ◽  
...  
2019 ◽  
Vol 493 ◽  
pp. 63-69 ◽  
Author(s):  
Jin-hua Ren ◽  
Yu-ting Huang ◽  
Kai-wen Li ◽  
Jie Shen ◽  
Wan-yu Zeng ◽  
...  

2021 ◽  
Vol 59 (3) ◽  
pp. 162-167
Author(s):  
Jae Young Kim ◽  
Geonoh Choe ◽  
Tae Kyu An ◽  
Yong Jin Jeong

Solution-processed zinc tin oxide (ZTO) thin-film transistors (TFTs) have great potential uses in next-generation wearable and flexible electronic products. Zinc and tin precursor materials are naturally abundant and have low fabrication costs. To integrate a single ZTO TFT into logic circuits including inverters, NAND, and NOR gates will require the development of a facile patterning process to replace conventional and complicated photolithography techniques which are usually time-consuming and toxic. In this study, self-patterned ZTO thin films were prepared using a photo-patternable precursor solution including a photoacid generator, (4-methylthiophenyl)methyl phenyl sulfonium triflate. Solution-processed ZTO precursor films fabricated with the photoacid generator were successfully micropatterned by UV exposure, and transitioned to a semiconducting ZTO thin film by heat treatment. The UV-irradiated precursor films became insoluble in developing solvent as the generated proton from the photoacid generator affected the metal-containing ligand and changed the solubility of the metal oxide precursors. The resulting ZTO thin films were utilized as the active layers of n-type TFTs, which exhibited a typical n-type transfer, and output characteristics with appropriate threshold voltage, on/off current ratio, and field-effect mobility. We believe that our work provides a convenient solution-based route to the fabrication of metal-oxide semiconductor patterns.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1295
Author(s):  
Dae-Hwan Kim ◽  
Hyun-Seok Cha ◽  
Hwan-Seok Jeong ◽  
Seong-Hyun Hwang ◽  
Hyuck-In Kwon

Herein, we investigated the effects of active layer thickness (tS) on the electrical characteristics and stability of high-mobility indium–gallium–tin oxide (IGTO) thin-film transistors (TFTs). IGTO TFTs, with tS values of 7 nm, 15 nm, 25 nm, 35 nm, and 50 nm, were prepared for this analysis. The drain current was only slightly modulated by the gate-to-source voltage, in the case of the IGTO TFT with tS = 50 nm. Under positive bias stress (PBS), the electrical stability of the IGTO TFTs with a tS less than 35 nm improved as the tS increased. However, the negative bias illumination stress (NBIS) stability of these IGTO TFTs deteriorated as the tS increased. To explain these phenomena, we compared the O1s spectra of IGTO thin films with different tS values, acquired using X-ray photoelectron spectroscopy. The characterization results revealed that the better PBS stability, and the low NBIS stability, of the IGTO TFTs with thicker active layers were mainly due to a decrease in the number of hydroxyl groups and an increase in the number of oxygen vacancies in the IGTO thin films with an increase in tS, respectively. Among the IGTO TFTs with different tS, the IGTO TFT with a 15-nm thick active layer exhibited the best electrical characteristics with a field-effect mobility (µFE) of 26.5 cm2/V·s, a subthreshold swing (SS) of 0.16 V/dec, and a threshold voltage (VTH) of 0.3 V. Moreover, the device exhibited robust stability under PBS (ΔVTH = 0.9 V) and NBIS (ΔVTH = −1.87 V).


2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20990-20995 ◽  
Author(s):  
Xiang Yang ◽  
Shu Jiang ◽  
Jun Li ◽  
Jian-Hua Zhang ◽  
Xi-Feng Li

In this paper, W-doped ZnSnO (WZTO) thin films and TFT devices are successfully fabricated by a wet-solution technique.


2018 ◽  
Vol 4 (7) ◽  
pp. 1800032 ◽  
Author(s):  
Cristina Fernandes ◽  
Ana Santa ◽  
Ângelo Santos ◽  
Pydi Bahubalindruni ◽  
Jonas Deuermeier ◽  
...  

2021 ◽  
Vol 317 ◽  
pp. 477-482
Author(s):  
Aris Doyan ◽  
Susilawati ◽  
Muhammad Taufik ◽  
Syamsul Hakim ◽  
Lalu Muliyadi

Tin oxide (SnO2) thin film is a form of modification of semiconductor material in nanosize. The thin film study aims to analyze the effect of triple doping (Aluminum, Indium, and Fluorine) on the optical properties of SnO2: (Al + In + F) thin films. Aluminum, Indium, and Fluorine as doping SnO2 with a mass percentage of 0, 5, 10, 15, 20, and 25% of the total thin-film material. The addition of Al, In, and F doping causes the thin film to change optical properties, namely the transmittance and absorbance values ​​changing. The transmittance value is 67.50, 73.00, 82.30, 87.30, 94.6, and 99.80 which is at a wavelength of 350 nm for the lowest to the highest doping percentage, respectively. The absorbance value increased with increasing doping percentage at 300 nm wavelength of 0.52, 0.76, 0.97, 1.05, 1.23, and 1.29 for 0, 5, 10, 15, 20, and 25% doping percentages, respectively. The absorbance value is then used to find the gap energy of the SnO2: (Al + In + F) thin film of the lowest doping percentage to the highest level i.e. 3.60, 3.55, 3.51, 3.47, 3.42, and 3.41 eV. Thin-film activation energy also decreased with values of 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV, respectively for an increasing percentage of doping. The thin-film SnO2: (Al + In + F) which experiences a gap energy reduction and activation energy makes the thin film more conductive because electron mobility from the valence band to the conduction band requires less energy and faster electron movement as a result of the addition of doping.


Sign in / Sign up

Export Citation Format

Share Document