scholarly journals Dynamic characteristics of bubbles in spherical bubble group considering evaporation and condensation of water vapor

2021 ◽  
Vol 70 (19) ◽  
pp. 194301-194301
Author(s):  
Xu Ke ◽  
◽  
Xu Long ◽  
Zhou Guang-Ping ◽  
2005 ◽  
Vol 19 (28n29) ◽  
pp. 1711-1714 ◽  
Author(s):  
LI YUAN ◽  
PING HE

Spherical oscillation of an acoustically levitated gas bubble in water was simulated numerically to elucidate the phenomenon of single-bubble sonoluminescence (SBSL). A refined hydro-chemical model was used, which took into account the processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions. The numerical results show significant water vapor dissociations but rather low degrees of ionizations. A widely accepted weakly ionized gas model is then used to compute the light emission. Contrary to earlier predictions without chemical reactions, the present calculated light spectra are generally too small and the pulses are too short to fit to recent experimental results within stable SBSL range. To solve this contradiction, the electrostatic interactions of the ionized gases are included, which is shown to lower the ionization potentials of gas species in the bubble significantly.


2001 ◽  
Vol 32 ◽  
pp. 51-58 ◽  
Author(s):  
Sergey A. Sokratov ◽  
Atsushi Sato ◽  
Yasushi Kamata

AbstractWater vapor in snow is responsible for two main processes connected to almost all studies where snow cover is involved: the snow-density change with time and snow recrystallization. Both processes are the result of a balance between evaporation and condensation on individual snow-crystal surfaces. However, such micro-scale mass balance has rarely been considered as a component of “macro-” heat and mass transfer in snow cover. The present work is an attempt to find a way of combining these two mass-exchange processes, as occurs in Nature. Density change and snow recrystallization rates are analyzed based on recently published temperature field observations around individual snow crystals, combined with experimental data on temperature distributions and recrystallization rates in snow under applied temperature gradients.


1998 ◽  
Vol 26 ◽  
pp. 73-76 ◽  
Author(s):  
Sergey A. Sokratov ◽  
Norikazu Maeno

Precise measurements of temperature and density distributions in snow under an applied temperature gradient showed that alternation of evaporation and condensation zones is formed and causes the wavy patterns in quasi-steady temperature and density distributions. In samples with a snow density of 200–500 kg2m−3the wavelength was 3–7 cm and the amplitude was roughly 2°C. The present result gives a clue to explaining the wide range of previously measured water-vapor diffusion coefficients in snow.


1998 ◽  
Vol 26 ◽  
pp. 73-76
Author(s):  
Sergey A. Sokratov ◽  
Norikazu Maeno

Precise measurements of temperature and density distributions in snow under an applied temperature gradient showed that alternation of evaporation and condensation zones is formed and causes the wavy patterns in quasi-steady temperature and density distributions. In samples with a snow density of 200–500 kg2 m−3 the wavelength was 3–7 cm and the amplitude was roughly 2°C. The present result gives a clue to explaining the wide range of previously measured water-vapor diffusion coefficients in snow.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


Author(s):  
V. R. Matricardi ◽  
G. G. Hausner ◽  
D. F. Parsons

In order to observe room temperature hydrated specimens in an electron microscope, the following conditions should be satisfied: The specimen should be surrounded by water vapor as close as possible to the equilibrium vapor pressure corresponding to the temperature of the specimen.The specimen grid should be inserted, focused and photo graphed in the shortest possible time in order to minimize dehydration.The full area of the specimen grid should be visible in order to minimize the number of changes of specimen required.There should be no pressure gradient across the grid so that specimens can be straddled across holes.Leakage of water vapor to the column should be minimized.


Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Sign in / Sign up

Export Citation Format

Share Document