scholarly journals The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yongjie Wei ◽  
Zhenyi An ◽  
Zhongju Zou ◽  
Rhea Sumpter ◽  
Minfei Su ◽  
...  

Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


1999 ◽  
Vol 19 (12) ◽  
pp. 8422-8432 ◽  
Author(s):  
Olivier Donzé ◽  
Didier Picard

ABSTRACT The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.


2008 ◽  
Vol 412 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Ekerot ◽  
Marios P. Stavridis ◽  
Laurent Delavaine ◽  
Michael P. Mitchell ◽  
Christopher Staples ◽  
...  

DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.


1997 ◽  
Vol 110 (12) ◽  
pp. 1373-1386 ◽  
Author(s):  
G.R. Walker ◽  
C.B. Shuster ◽  
D.R. Burgess

Research over the past few years has demonstrated the central role of protein phosphorylation in regulating mitosis and the cell cycle. However, little is known about how the mechanisms regulating the entry into mitosis contribute to the positional and temporal regulation of the actomyosin-based contractile ring formed during cytokinesis. Recent studies implicate p34cdc2 as a negative regulator of myosin II activity, suggesting a link between the mitotic cycle and cytokinesis. In an effort to study the relationship between protein phosphorylation and cytokinesis, we examined the in vivo and in vitro phosphorylation of actin-associated cortical cytoskeletal (CSK) proteins in an isolated model of the sea urchin egg cortex. Examination of cortices derived from eggs or zygotes labeled with 32P-orthophosphate reveals a number of cortex-associated phosphorylated proteins, including polypeptides of 20, 43 and 66 kDa. These three major phosphoproteins are also detected when isolated cortices are incubated with [32P]ATP in vitro, suggesting that the kinases that phosphorylate these substrates are also specifically associated with the cortex. The kinase activities in vivo and in vitro are stimulated by fertilization and display cell cycle-dependent activities. Gel autophosphorylation assays, kinase assays and immunoblot analysis reveal the presence of p34cdc2 as well as members of the mitogen-activated protein kinase family, whose activities in the CSK peak at cell division. Nocodazole, which inhibits microtubule formation and thus blocks cytokinesis, significantly delays the time of peak cortical protein phosphorylation as well as the peak in whole-cell histone H1 kinase activity. These results suggest that a key element regulating cortical contraction during cytokinesis is the timing of protein kinase activities associated with the cortical cytoskeleton that is in turn regulated by the mitotic apparatus.


2020 ◽  
Vol 117 (19) ◽  
pp. 10246-10253 ◽  
Author(s):  
Xin Yang ◽  
Shun Deng ◽  
Xuegao Wei ◽  
Jing Yang ◽  
Qiannan Zhao ◽  
...  

The evolution of insect resistance to pesticides poses a continuing threat to agriculture and human health. While much is known about the proximate molecular and biochemical mechanisms that confer resistance, far less is known about the regulation of the specific genes/gene families involved, particularly by trans-acting factors such as signal-regulated transcription factors. Here we resolve in fine detail the trans-regulation of CYP6CM1, a cytochrome P450 that confers resistance to neonicotinoid insecticides in the whitefly Bemisia tabaci, by the mitogen-activated protein kinase (MAPK)-directed activation of the transcription factor cAMP-response element binding protein (CREB). Reporter gene assays were used to identify the putative promoter of CYP6CM1, but no consistent polymorphisms were observed in the promoter of a resistant strain of B. tabaci (imidacloprid-resistant, IMR), which overexpresses this gene, compared to a susceptible strain (imidacloprid-susceptible, IMS). Investigation of potential trans-acting factors using in vitro and in vivo assays demonstrated that the bZIP transcription factor CREB directly regulates CYP6CM1 expression by binding to a cAMP-response element (CRE)-like site in the promoter of this gene. CREB is overexpressed in the IMR strain, and inhibitor, luciferase, and RNA interference assays revealed that a signaling pathway of MAPKs mediates the activation of CREB, and thus the increased expression of CYP6CM1, by phosphorylation-mediated signal transduction. Collectively, these results provide mechanistic insights into the regulation of xenobiotic responses in insects and implicate both the MAPK-signaling pathway and a transcription factor in the development of pesticide resistance.


2008 ◽  
Vol 413 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Yan Zeng ◽  
Heidi Sankala ◽  
Xiaoxiao Zhang ◽  
Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


2016 ◽  
Vol 76 (3) ◽  
pp. 612-619 ◽  
Author(s):  
E A Ross ◽  
A J Naylor ◽  
J D O'Neil ◽  
T Crowley ◽  
M L Ridley ◽  
...  

ObjectivesTristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP.MethodsThe expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP.ResultsTTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation.ConclusionsThe phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.


Author(s):  
Minsu PARK ◽  
Hyeon Kyeong CHOI ◽  
Jeung Hee AN

Background: We aimed to elucidate the preventive effects of taurine against osteopenia in ovariectomized (OVX) rats and the mechanisms by which taurine regulates osteoblastogenesis in vitro and in vivo. Methods: The effects of the taurine on human osteoblast MG-63 cell differentiation and osteoblastogenesis effect in OVX rat were examined Konkuk University in 2018 by evaluating osteoblast differentiation, and expression of osteoblast-specific factors by western blotting analysis. Results: Taurine supplementation significantly improved alkaline phosphatase (ALP) activity and mineralization in a concentration-dependent manner. Further, taurine induced the expression of osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (RUNX2), small mothers against decapentaplegic 1/5/8 (SMAD1/5/8), wingless-type MMTV integration site family member 3A (Wnt3a), and collagen type 1 (COL-1) via mitogen-activated protein kinase (MAPK) and serine/threonine protein kinase (Akt). Moreover, the RUNX2 activity of the taurine-treated group was enhanced by proteinprotein interactions such as Wnt3a-induced p-AKT/RUNX2 and BMP-mediated SMADs/MAPK/RUNX2 interactions. Conclusion: Our in vitro and in vivo results suggested that taurine can be considered as a potential therapeutic candidate agent for preventing bone loss in postmenopausal osteoporosis.


2011 ◽  
Vol 22 (11) ◽  
pp. 1836-1844 ◽  
Author(s):  
Maria Fragiadaki ◽  
Tetsurou Ikeda ◽  
Abigail Witherden ◽  
Roger M Mason ◽  
David Abraham ◽  
...  

Transforming growth factor-β (TGF-β) is an inducer of type I collagen, and uncontrolled collagen production leads to tissue scarring and organ failure. Here we hypothesize that uncovering a molecular mechanism that enables us to switch off type I collagen may prove beneficial in treating fibrosis. For the first time, to our knowledge, we provide evidence that CUX1 acts as a negative regulator of TGF-β and potent inhibitor of type I collagen transcription. We show that CUX1, a CCAAT displacement protein, is associated with reduced expression of type I collagen both in vivo and in vitro. We show that enhancing the expression of CUX1 results in effective suppression of type I collagen. We demonstrate that the mechanism by which CUX1 suppresses type I collagen is through interfering with gene transcription. In addition, using an in vivo murine model of aristolochic acid (AA)-induced interstitial fibrosis and human AA nephropathy, we observe that CUX1 expression was significantly reduced in fibrotic tissue when compared to control samples. Moreover, silencing of CUX1 in fibroblasts from kidneys of patients with renal fibrosis resulted in increased type I collagen expression. Furthermore, the abnormal CUX1 expression was restored by addition of TGF-β via the p38 mitogen-activated protein kinase pathway. Collectively, our study demonstrates that modifications of CUX1 expression lead to aberrant expression of type I collagen, which may provide a molecular basis for fibrogenesis.


2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


Sign in / Sign up

Export Citation Format

Share Document