scholarly journals First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Guangliang Wang ◽  
Surendra K Rajpurohit ◽  
Fabien Delaspre ◽  
Steven L Walker ◽  
David T White ◽  
...  

Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2251-2260 ◽  
Author(s):  
Jennifer L. Beith ◽  
Emilyn U. Alejandro ◽  
James D. Johnson

A relative decrease in β-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that β-cell duplication plays a dominant role in the regulation of adult β-cell mass. Therefore, knowledge of the endogenous regulators of β-cell replication is critical for understanding the physiological control of β-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on β-cells to promote survival. Whether insulin stimulates adult β-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5–15 mm did not significantly increase β-cell replication. β-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate β-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of β-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.


Endocrinology ◽  
2008 ◽  
Vol 150 (3) ◽  
pp. 1147-1154 ◽  
Author(s):  
Akinobu Nakamura ◽  
Yasuo Terauchi ◽  
Sumika Ohyama ◽  
Junko Kubota ◽  
Hiroko Shimazaki ◽  
...  

We investigated the effect of glucokinase activator (GKA) on glucose metabolism and β-cell mass. We analyzed four mouse groups: wild-type mice and β-cell-specific haploinsufficiency of glucokinase gene (Gck+/−) mice on a high-fat (HF) diet. Each genotype was also treated with GKA mixed in the HF diet. Rodent insulinoma cells and isolated islets were used to evaluate β-cell proliferation by GKA. After 20 wk on the above diets, there were no differences in body weight, lipid profiles, and liver triglyceride content among the four groups. Glucose tolerance was improved shortly after the GKA treatment in both genotypes of mice. β-Cell mass increased in wild-type mice compared with Gck+/− mice, but a further increase was not observed after the administration of GKA in both genotypes. Interestingly, GKA was able to up-regulate insulin receptor substrate-2 (Irs-2) expression in insulinoma cells and isolated islets. The administration of GKA increased 5-bromo-2-deoxyuridine (BrdU) incorporation in insulinoma cells, and 3 d administration of GKA markedly increased BrdU incorporation in mice treated with GKA in both genotypes, compared with those without GKA. In conclusion, GKA was able to chronically improve glucose metabolism for mice on the HF diet. Although chronic GKA administration failed to cause a further increase in β-cell mass in vivo, GKA was able to increase beta cell proliferation in vitro and with a 3-d administration in vivo. This apparent discrepancy can be explained by a chronic reduction in ambient blood glucose levels by GKA treatment. Glucokinase activator is able to improve glucose metabolism and has an effect on β cell proliferation.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4589-4600 ◽  
Author(s):  
Jennifer L. Plank ◽  
Audrey Y. Frist ◽  
Alison W. LeGrone ◽  
Mark A. Magnuson ◽  
Patricia A. Labosky

A complete molecular understanding of β-cell mass expansion will be useful for the improvement of therapies to treat diabetic patients. During normal periods of metabolic challenges, such as pregnancy, β-cells proliferate, or self-renew, to meet the new physiological demands. The transcription factor Forkhead box D3 (Foxd3) is required for maintenance and self-renewal of several diverse progenitor cell lineages, and Foxd3 is expressed in the pancreatic primordium beginning at 10.5 d postcoitum, becoming localized predominantly to β-cells after birth. Here, we show that mice carrying a pancreas-specific deletion of Foxd3 have impaired glucose tolerance, decreased β-cell mass, decreased β-cell proliferation, and decreased β-cell size during pregnancy. In addition, several genes known to regulate proliferation, Foxm1, Skp2, Ezh2, Akt2, and Cdkn1a, are misregulated in islets isolated from these Foxd3 mutant mice. Together, these data place Foxd3 upstream of several pathways critical for β-cell mass expansion in vivo.


2021 ◽  
Author(s):  
Caterina Iorio ◽  
Jillian L Rourke ◽  
Lisa Wells ◽  
Jun-Ichi Sakamaki ◽  
Emily Moon ◽  
...  

Loss of pancreatic β cells is the hallmark of type 1 diabetes (T1D), for which provision of insulin is the standard of care. While regenerative and stem cell therapies hold the promise of generating single-source or host-matched tissue to obviate immune-mediated complications, these will still require surgical intervention and immunosuppression. Thus, methods that harness the innate capacity of β cells to proliferate to increase β cell mass in vivo are considered vital for future T1D treatment. However, early in life β cells enter what appears to be a permanent state of quiescence, directed by an evolutionarily selected genetic program that establishes a β cell mass setpoint to guard against development of fatal endocrine tumours. Here we report the development of a high-throughput RNAi screening approach to identify upstream pathways that regulate adult human β cell quiescence and demonstrate in a screen of the GPCRome that silencing G-protein coupled receptor 3 (GPR3) leads to human pancreatic β cell proliferation. Loss of GPR3 leads to activation of Salt Inducible Kinase 2 (SIK2), which is necessary and sufficient to drive cell cycle entry, increase β cell mass, and enhance insulin secretion in mice. Taken together, targeting the GPR3-SIK2 pathway represents a novel avenue to stimulate the regeneration of β cells.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S485-S485
Author(s):  
Sarah McGuffin ◽  
Steven Mullen ◽  
Julie Early ◽  
Tanya Parish

Abstract Background Nontuberculous mycobacteria (NTM), particularly Mycobacterium avium complex and Mycobacterium abscessus complex, cause significant morbidity and mortality in patients with impaired host immunity or pre-existing structural lung conditions. NTM infections are increasing at an alarming rate worldwide and there is a dearth of progress in regard to the development of efficacious and tolerable drugs to treat such infections. Traditional drug discovery screens do not account for the diverse physiological conditions, microenvironments, and compartments that the bacilli encounter during human infection. In order to help populate the NTM drug pipeline, and explore the disconnect between in vitro activity, in vivo activity, and clinical outcomes, we are developing a high throughput in vitro assay platform that will more closely model the unique infection-relevant conditions encountered by NTM. Methods We are developing and validating a suite of in vitro assays that screen compounds for activity against extracellular planktonic bacteria, extracellular bacteria within biofilms, intracellular bacteria, and nutrient-starved non-replicating bacteria. Results We are using both the smooth and rough morphotypes of M. abscessus and M. avium. We have validated high throughput assays to pharmaceutical standards for replicating and non-replicating M. abscessus. We have also tested a panel of 18 known anti-mycobacterial compounds. Assay development is currently underway to test compounds for activity against NTM in biofilm and inside macrophages as well. Conclusion To enhance hit identification for scaffolds to use as starting points for NTM drug development, focused libraries of compounds that have undergone significant preclinical profiling and/or compounds with known activity against M. tuberculosis (TB) will be screened. Such a “piggyback” approach usurps advances made in TB drug development and leverages them for NTM drug discovery. This will help expedite novel drug development, reduce attrition rate, and offer a shorter route to clinical use as it exploits the prior investment in medicinal chemistry, pharmacology, and toxicology. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 309 (7) ◽  
pp. E621-E631 ◽  
Author(s):  
Robin Shoemaker ◽  
Frederique Yiannikouris ◽  
Sean Thatcher ◽  
Lisa Cassis

Drugs that inhibit the renin-angiotensin system (RAS) decrease the onset of type 2 diabetes (T2D). Pancreatic islets express RAS components, including angiotensin-converting enzyme 2 (ACE2), which cleaves angiotensin II (Ang II) to angiotensin-(1–7) [Ang-(1–7)]. Overexpression of ACE2 in pancreas of diabetic mice improved glucose homeostasis. The purpose of this study was to determine if deficiency of endogenous ACE2 contributes to islet dysfunction and T2D. We hypothesized that ACE2 deficiency potentiates the decline in β-cell function and augments the development of diet-induced T2D. Male Ace2 +/y or Ace2 −/y mice were fed a low-fat (LF) or high-fat (HF) diet for 1 or 4 mo. A subset of 1-mo HF-fed mice were infused with Sal (Sal), losartan (Los), or Ang-(1–7). At 4 mo, while both genotypes of HF-fed mice developed a similar level of insulin resistance, adaptive hyperinsulinemia was reduced in Ace2 −/y vs. Ace2 +/y mice. Similarly, in vivo glucose-stimulated insulin secretion (GSIS) was reduced in 1-mo HF-fed Ace2 −/y compared with Ace2 +/y mice, resulting in augmented hyperglycemia. The average islet area was significantly smaller in both LF- and HF-fed Ace2 −/y vs. Ace2 +/y mice. Additionally, β-cell mass and proliferation were reduced significantly in HF-fed Ace2 −/y vs. Ace2 +/y mice. Neither infusion of Los nor Ang-(1–7) was able to correct impaired in vivo GSIS of HF-fed ACE2-deficient mice. These results demonstrate a critical role for endogenous ACE2 in the adaptive β-cell hyperinsulinemic response to HF feeding through regulation of β-cell proliferation and growth.


Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1618-1626 ◽  
Author(s):  
Carol Huang ◽  
Frances Snider ◽  
James C. Cross

Increased islet mass is an adaptive mechanism that occurs to combat insulin resistance during pregnancy. Prolactin (PRL) can enhance β-cell proliferation and insulin secretion in vitro, yet whether it is PRL or other pregnancy-related factors that mediate these adaptive changes during pregnancy is unknown. The objective of this study was to determine whether prolactin receptor (Prlr) is required for normal maternal glucose homeostasis during pregnancy. An ip glucose tolerance test was performed on timed-pregnant Prlr+/+ and heterozygous null Prlr+/− mice on d 0, 15, and 18 of pregnancy. Compared with Prlr+/+ mice, Prlr+/− mice had impaired glucose clearance, decreased glucose-stimulated insulin release, higher nonfasted blood glucose, and lower insulin levels during but not before pregnancy. There was no difference in their insulin tolerance. Prlr+/+ mice show a significant incremental increase in islet density and β-cell number and mass throughout pregnancy, which was attenuated in the Prlr+/− mice. Prlr+/+ mice also had a more robust β-cell proliferation rate during pregnancy, whereas there was no difference in apoptosis rate between the Prlr+/+ and Prlr+/− mice before, during, or after pregnancy. Interestingly, genotype of the mothers had a significant impact on the offspring’s phenotype, such that daughters derived from Prlr+/− mothers had a more severe phenotype than those derived from Prlr+/+ mothers. In conclusion, this is the first in vivo demonstration that the action of pregnancy hormones, acting through Prlr, is required for normal maternal glucose tolerance during pregnancy by increasing β-cell mass.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Vol 22 (13) ◽  
pp. 6713
Author(s):  
Romana Bohuslavova ◽  
Ondrej Smolik ◽  
Jessica Malfatti ◽  
Zuzana Berkova ◽  
Zaneta Novakova ◽  
...  

Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.


Sign in / Sign up

Export Citation Format

Share Document