scholarly journals Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nimi Marcel ◽  
Apurva Sarin

Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation.

2017 ◽  
Vol 292 (8) ◽  
pp. 3201-3212 ◽  
Author(s):  
Ryo Maeda ◽  
Hiroyuki Tamashiro ◽  
Kazunori Takano ◽  
Hiro Takahashi ◽  
Hidefumi Suzuki ◽  
...  

Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.


2002 ◽  
Vol 364 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Robin J. DICKINSON ◽  
David J. WILLIAMS ◽  
David N. SLACK ◽  
Jill WILLIAMSON ◽  
Ole-Morten SETERNES ◽  
...  

Mitogen-activated protein kinases (MAPKs) play a vital role in cellular growth control, but far less is known about these signalling pathways in the context of embryonic development. Duration and magnitude of MAPK activation are crucial factors in cell fate decisions, and reflect a balance between the activities of upstream activators and specific MAPK phosphatases (MKPs). Here, we report the isolation and characterization of the murine Pyst3 gene, which encodes a cytosolic dual-specificity MKP. This enzyme selectively interacts with, and is catalytically activated by, the ‘classical’ extracellular signal-regulated kinases (ERKs) 1 and 2 and, to a lesser extent, the stress-activated MAPK p38α. These properties define the ability of this enzyme to dephosphorylate and inactivate ERK1/2 and p38α, but not JNK (c-Jun N-terminal kinase) in vivo. When expressed in mammalian cells, the Pyst3 protein is predominantly cytoplasmic. Furthermore, leptomycin B causes a complete redistribution of the protein to the nucleus, implicating a CRM (chromosomal region maintenance)1/exportin 1-dependent nuclear export signal in determining the subcellular localization of this enzyme. Finally, whole-mount in situ hybridization studies in mouse embryos reveal that the Pyst3 gene is expressed specifically in the placenta, developing liver and in migratory muscle cells. Our results suggest that this enzyme may have a critical role in regulating the activity of MAPK signalling during early development and organogenesis.


2008 ◽  
Vol 29 (4) ◽  
pp. 1000-1006 ◽  
Author(s):  
Christine S. Vissinga ◽  
Tiong C. Yeo ◽  
Sarah Warren ◽  
James V. Brawley ◽  
Jennifer Phillips ◽  
...  

ABSTRACT Nijmegen breakage syndrome arises from hypomorphic mutations in the NBN gene encoding nibrin, a component of the MRE11/RAD50/nibrin (MRN) complex. In mammalian cells, the MRN complex localizes to the nucleus, where it plays multiple roles in the cellular response to DNA double-strand breaks. In the current study, sequences in mouse nibrin required to direct the nuclear localization of the MRN complex were identified by site-specific mutagenesis. Unexpectedly, nibrin was found to contain both nuclear localizing signal (NLS) sequences and a nuclear export signal (NES) sequence whose functions were confirmed by mutagenesis. Both nuclear import and export sequences were active in vivo. Disruption of either the NLS or NES sequences of nibrin significantly altered the cellular distribution of nibrin and Mre11 and impaired survival after exposure to ionizing radiation. Mutation of the NES sequence in nibrin slowed the turnover of phosphorylated nibrin after irradiation, indicating that nuclear export of nibrin may function, in part, to downregulate posttranslationally modified MRN complex components after DNA damage responses are complete.


2005 ◽  
Vol 25 (7) ◽  
pp. 2573-2582 ◽  
Author(s):  
Shirley K. Knauer ◽  
Gert Carra ◽  
Roland H. Stauber

ABSTRACT Homeodomain transcription factors control a variety of essential cell fate decisions during development. To understand the developmental regulation by these transcription factors, we describe here the molecular analysis of paired-like CVC homeodomain protein (PLC-HDP) trafficking. Complementary experimental approaches demonstrated that PLC-HDP family members are exported by the Crm1 pathway and contain an evolutionary conserved leucine-rich nuclear export signal. Importantly, inactivation of the nuclear export signal enhanced protein stability, resulting in increased transactivation of transfected reporters and decreased extracellular secretion. In addition, PLC-HDPs harbor a conserved active nuclear import signal that could also function as a protein transduction domain. In our study, we characterized PLC-HDPs as mobile nucleocytoplasmic shuttle proteins with the potential for unconventional secretion and intercellular transfer. Nucleocytoplasmic transport may thus represent a conserved control mechanism to fine-tune the transcriptional activity of PLC-HDPs prerequisite for regulating and maintaining the complex expression pattern during development.


Development ◽  
2000 ◽  
Vol 127 (5) ◽  
pp. 1115-1130 ◽  
Author(s):  
S. Zaffran ◽  
M. Frasch

The Notch signaling pathway is required, in concert with cell-type-specific transcriptional regulators and other signaling processes, for multiple cell fate decisions during mesodermal and ectodermal tissue development. In many instances, Notch signaling occurs initially in a bidirectional manner and then becomes unidirectional upon amplification of small inherent differences in signaling activity between neighboring cells. In addition to ligands and extracellular modulators of the Notch receptor, several intracellular proteins have been identified that can positively or negatively influence the activity of the Notch pathway during these dynamic processes. Here, we describe a new gene, Barbu, whose product can antagonize Notch signaling activity during Drosophila development. Barbu encodes a small and largely cytoplasmic protein with sequence similarity to the proteins encoded by the transcription units m4 and m(alpha) of the E(spl) complex. Ectopic expression studies with Barbu provide evidence that Barbu can antagonize Notch during lateral inhibition processes in the embryonic mesoderm, sensory organ specification in imaginal discs and cell type specification in developing ommatidia. Barbu loss-of-function mutations cause lethality and disrupt the establishment of planar polarity and photoreceptor specification in eye imaginal discs, which may also be a consequence of altered Notch signaling activities. Furthermore, in the embryonic neuroectoderm, Barbu expression is inducible by activated Notch. Taken together, we propose that Barbu functions in a negative feed-back loop, which may be important for the accurate adjustment of Notch signaling activity and the extinction of Notch activity between successive rounds of signaling events.


2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Virginia Guarani ◽  
Franck Dequiedt ◽  
Andreas M Zeiher ◽  
Stefanie Dimmeler ◽  
Michael Potente

The Notch signaling pathway is a versatile regulator of cell fate decisions and plays an essential role for embryonic and postnatal vascular development. As only modest differences in Notch pathway activity suffice to determine dramatic differences in blood vessel development, this pathway is tightly regulated by a variety of molecular mechanisms. Reversible acetylation has emerged as an important post-translational modification of several non-histone proteins, which are targeted by histone deacetylases (HDACs). Here, we report that specifically the Notch1 intracellular domain (NICD) is itself an acetylated protein and that its acetylation level is tightly regulated by the SIRT1 deacetylase, which we have previously identified as a key regulator of endothelial angiogenic functions during vascular growth. Coexpression of NICD with histone acetyltransferases such as p300 or PCAF induced a dose- and time-dependent acetylation of NICD. Blocking HDAC activity using the class III HDAC inhibitor nicotinamid (NAM), but not the class I/II HDAC inhibior trichostatin A, resulted in a significant increase of NICD acetylation suggesting that NICD is targetd by class III HDACs for deacetylation. Among the class III HDACs with deacetylase activity (SIRT1, 2, 3, 5), knock down of specifically SIRT1 resulted in enhanced acetylation of NICD. Moreover, wild type SIRT1, but not a catalytically inactive mutant catalyzed the deacetylation of NICD in a nicotinamid-dependent manner. SIRT1, but SIRT2, SIRT3 or SIRT5, associated with NICD through its catalytic domain demonstrating that SIRT1 is a direct NICD deacetylase. Enhancing NICD acetylation by either overexpression of p300 or inhibition of SIRT1 activity using NAM or RNAi-mediated knock down resulted in enhanced NICD protein stability by blocking its ubiquitin-mediated degradation. Consistent with these results, loss of SIRT1 amplified Notch target gene expression in endothelial cells in response to NICD overexpression or treatment with the Notch ligand Dll4. In summary, our results identify reversible acetylation of NICD as a novel molecular mechanism to control Notch signaling and suggest that deacetylation of NICD by SIRT1 plays a key role in the dynamic regulation of Notch signaling in endothelial cells.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3745-3752 ◽  
Author(s):  
V. Jennings ◽  
J. de Celis ◽  
C. Delidakis ◽  
A. Preiss ◽  
S. Bray

The proteins encoded by Notch and the Enhancer of split complex are components of a cell-cell interaction mechanism which is important in many cell fate decisions throughout development. One such decision is the formation of the sensory organ precursor cell during the development of the peripheral nervous system in Drosophila. Cells acquire the potential to be neural through the expression of the proneural genes, and the Notch pathway is required to limit neural fate to a single cell from a proneural cluster. However, despite extensive analysis, the precise pathways linking the proneural with Notch and Enhancer of split gene functions remain obscure. For example, it has been suggested that achaete-scute complex proteins directly activate Enhancer of split genes leaving the action of Notch in the pathway unclear. Using monoclonal antibodies that recognise products of the Enhancer of split complex, we show that these proteins accumulate in the cells surrounding the developing sensory organ precursor cell and that their expression is dependent on the activity of Notch and does not directly correlate with expression of Achaete. We further clarify the pathway by showing that ubiquitous expression of an activated Notch receptor leads to widespread accumulation of Enhancer of split proteins even in the absence of achaete-scute complex proteins. Thus Enhancer of split protein expression in response to Notch activity does not require achaete-scute complex proteins.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3865-3876
Author(s):  
M.S. Rones ◽  
K.A. McLaughlin ◽  
M. Raffin ◽  
M. Mercola

Notch signaling mediates numerous developmental cell fate decisions in organisms ranging from flies to humans, resulting in the generation of multiple cell types from equipotential precursors. In this paper, we present evidence that activation of Notch by its ligand Serrate apportions myogenic and non-myogenic cell fates within the early Xenopus heart field. The crescent-shaped field of heart mesoderm is specified initially as cardiomyogenic. While the ventral region of the field forms the myocardial tube, the dorsolateral portions lose myogenic potency and form the dorsal mesocardium and pericardial roof (Raffin, M., Leong, L. M., Rones, M. S., Sparrow, D., Mohun, T. and Mercola, M. (2000) Dev. Biol., 218, 326–340). The local interactions that establish or maintain the distinct myocardial and non-myocardial domains have never been described. Here we show that Xenopus Notch1 (Xotch) and Serrate1 are expressed in overlapping patterns in the early heart field. Conditional activation or inhibition of the Notch pathway with inducible dominant negative or active forms of the RBP-J/Suppressor of Hairless [Su(H)] transcription factor indicated that activation of Notch feeds back on Serrate1 gene expression to localize transcripts more dorsolaterally than those of Notch1, with overlap in the region of the developing mesocardium. Moreover, Notch pathway activation decreased myocardial gene expression and increased expression of a marker of the mesocardium and pericardial roof, whereas inhibition of Notch signaling had the opposite effect. Activation or inhibition of Notch also regulated contribution of individual cells to the myocardium. Importantly, expression of Nkx2. 5 and Gata4 remained largely unaffected, indicating that Notch signaling functions downstream of heart field specification. We conclude that Notch signaling through Su(H) suppresses cardiomyogenesis and that this activity is essential for the correct specification of myocardial and non-myocardial cell fates.


Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1139-1148 ◽  
Author(s):  
J.L. Pompa de la ◽  
A. Wakeham ◽  
K.M. Correia ◽  
E. Samper ◽  
S. Brown ◽  
...  

The Notch pathway functions in multiple cell fate determination processes in invertebrate embryos, including the decision between the neuroblast and epidermoblast lineages in Drosophila. In the mouse, targeted mutation of the Notch pathway genes Notch1 and RBP-Jk has demonstrated a role for these genes in somite segmentation, but a function in neurogenesis and in cell fate decisions has not been shown. Here we show that these mutations lead to altered expression of the Notch signalling pathway homologues Hes-5, Mash-1 and Dll1, resulting in enhanced neurogenesis. Precocious neuronal differentiation is indicated by the expanded expression domains of Math4A, neuroD and NSCL-1. The RBP-Jk mutation has stronger effects on expression of these genes than does the Notch1 mutation, consistent with functional redundancy of Notch genes in neurogenesis. Our results demonstrate conservation of the Notch pathway and its regulatory mechanisms from fly to mouse, and support a role for the murine Notch signalling pathway in the regulation of neural stem cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document