scholarly journals Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Christine J Huh ◽  
Bo Zhang ◽  
Matheus B Victor ◽  
Sonika Dahiya ◽  
Luis FZ Batista ◽  
...  

Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion.

2019 ◽  
Author(s):  
Tapash Jay Sarkar ◽  
Marco Quarta ◽  
Shravani Mukherjee ◽  
Alex Colville ◽  
Patrick Paine ◽  
...  

SummaryAging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels1-3. At the chromatin level, aging is associated with the progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis3. The technology of nuclear reprogramming to pluripotency, through over-expression of a small number of transcription factors, can revert both the age and the identity of any cell to that of an embryonic cell by driving epigenetic reprogramming2,4,5. Recent evidence has shown that transient transgenic reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice6. However, it is unknown how this form of ‘epigenetic rejuvenation’ would apply to physiologically aged cells and, importantly, how it might translate to human cells. Here we show that transient reprogramming, mediated by transient expression of mRNAs, promotes a rapid reversal of both cellular aging and of epigenetic clock in human fibroblasts and endothelial cells, reduces the inflammatory profile in human chondrocytes, and restores youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity. Our method, that we named Epigenetic Reprogramming of Aging (ERA), paves the way to a novel, potentially translatable strategy for ex vivo cell rejuvenation treatment. In addition, ERA holds promise for in vivo tissue rejuvenation therapies to reverse the physiological manifestations of aging and the risk for the development of age-related diseases.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 5-5
Author(s):  
Albert Higgins-Chen ◽  
Kyra Thrush ◽  
Tina Hu-Seliger ◽  
Yunzhang Wang ◽  
Sara Hagg ◽  
...  

Abstract Epigenetic clocks are widely used aging biomarkers, but they are calculated from methylation data for individual CpGs that can be surprisingly unreliable. We report that technical noise causes six major epigenetic clocks to deviate by 3 to 9 years between replicates. We present a novel computational solution: we perform principal component analysis followed by biological age prediction using principal components, extracting shared age-related changes across CpGs while ignoring noise from individual CpGs. Our novel principal-component versions of six clocks show agreement between most technical replicates within 1 year, and increased stability in short- and long-term longitudinal studies. This requires only one additional step compared to traditional clocks, does not require prior knowledge of CpG reliabilities, and can improve the reliability of any existing or future epigenetic biomarker. The extremely high reliability of principal component epigenetic clocks makes them particularly useful for personalized medicine and clinical trials evaluating novel aging interventions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Camila Gudenschwager ◽  
Isadora Chavez ◽  
Cesar Cardenas ◽  
Christian Gonzalez-Billault

Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer’s, Parkinson’s, and Huntington’s disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.


2022 ◽  
Author(s):  
Sonja Fixemer ◽  
Corrado Ameli ◽  
Gael P. Hammer ◽  
Luis M. Salamanca ◽  
Oihane Uriarte Huarte ◽  
...  

Hippocampal alteration is at the centre of memory decline in the most common age-related neurodegenerative diseases: Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). However, the subregional deterioration of the hippocampus differs between both diseases with more severe atrophy in the CA1 subfield of the AD patients. How AD and DLB-typical pathologies compose the various local microenvironment of the hippocampus across AD and DLB needs to be further explored to understand this process. Additionally, microglia responses could further impact the atrophy rate. Some studies suggest that microglia react differently according to the underlying neurodegenerative disorder. How microglia are transformed across hippocampal subfields in AD and DLB, and how their changes are associated with disease-typical pathologies remains to be determined. To these purposes, we performed a volumetric analysis of phospho-Tau (P-Tau), Amyloid-beta (Abeta), and phospho-alpha-Synuclein (P-Syn) loads, quantified and classified microglia according to distinct morphological phenotypes using high-resolution confocal 3D microscopy of hippocampal CA1, CA3 and DG/CA4 subfields of late-onset AD (n=10) and DLB (n=8) as well as age-matched control samples (n=11). We found that each of the Tau, Abeta and Synuclein pathologies followed a specific subregional distribution, relatively preserved across AD and DLB. P-Tau, Abeta and P-Syn burdens were significantly exacerbated in AD, with Tau pathology being particularly severe in the AD CA1. P-Tau and P-Syn burdens were highly correlated across subfields and conditions (R2Spear = 0.79; P < 0.001) and result from a local co-distribution of P-Tau and P-Syn inclusions in neighbouring neurons, with only a low proportion of double-positive cells. In parallel, we assessed the changes of the microglia responses by measuring 16 morphological features of more than 35,000 individual microglial cells and classifying them into seven-distinct morphological clusters. We found microglia features- and clusters-variations subfield- and condition-dependent. Two of the seven morphological clusters, with more amoeboid and less branched forms, were identified as disease-enriched and found to be further increased in AD. Interestingly, some microglial features or clusters were associated with one but more often with a combination of two pathologies in a subfield-dependent manner. In conclusion, our study shows a multimodal association of the hippocampal microglia responses with the co-occurrence, distribution and severity of AD and DLB pathologies. In DLB hippocampi, pathological imprint and microglia responses follow AD trends but with lesser severity. Our study suggests that the increased pathological burdens of P-Tau and P-Syn and associated microglia alterations are involved in a more severe deterioration of the CA1 in AD as compared to DLB.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jack Hearn ◽  
Fiona Plenderleith ◽  
Tom J. Little

Abstract Background Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna. Results Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that are highly correlated with chronological age. Conclusions Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age positions, which is exciting but requires confirmation.


2002 ◽  
Vol 13 (12) ◽  
pp. 4243-4255 ◽  
Author(s):  
Julie E. Legakis ◽  
Jay I. Koepke ◽  
Chris Jedeszko ◽  
Ferdous Barlaskar ◽  
Laura J. Terlecky ◽  
...  

The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ting Zhao ◽  
Shengfan Ye ◽  
Zimu Tang ◽  
Liwei Guo ◽  
Zhipeng Ma ◽  
...  

AbstractReactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manjot Kaur Grewal ◽  
Shruti Chandra ◽  
Alan Bird ◽  
Glen Jeffery ◽  
Sobha Sivaprasad

AbstractTo evaluate the effect of aging, intra- and intersession repeatability and regional scotopic sensitivities in healthy and age-related macular degeneration (AMD) eyes. Intra- and intersession agreement and effect of age was measured in healthy individuals. The mean sensitivity (MS) and pointwise retinal sensitivities (PWS) within the central 24° with 505 nm (cyan) and 625 nm (red) stimuli were evaluated in 50 individuals (11 healthy and 39 AMD eyes). The overall intra- and intersession had excellent reliability (intraclass correlation coefficient, ICC > 0.90) and tests were highly correlated (Spearman rs = 0.75–0.86). Eyes with subretinal drusenoid deposit (SDD) had reduced PWS centrally, particularly at inferior and nasal retinal locations compared with controls and intermediate AMD (iAMD) without SDD. There was no difference in MS or PWS at any retinal location between iAMD without SDD and healthy individuals nor between iAMD with SDD and non-foveal atrophic AMD groups. Eyes with SDD have reduced rod function compared to iAMD without SDD and healthy eyes, but similar to eyes with non-foveal atrophy. Our results highlight rod dysfunction is not directly correlated with drusen load and SDD location.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
T. Ząbek ◽  
E. Semik-Gurgul ◽  
T. Szmatoła ◽  
A. Gurgul ◽  
A. Fornal ◽  
...  

Horses are one of the longest-living species of farm animals. Advanced age is often associated with a decrease in body condition, dysfunction of immune system, and late-onset disorders. Due to this, the search for new solutions in the prevention and treatment of pathological conditions of the advanced age of horses is desirable. That is why the identification of aging-related changes in the horse genome is interesting in this respect. In the recent years, the research on aging includes studies of age-related epigenetic effects observed on the DNA methylation level. We applied reduced representation bisulfite sequencing (RRBS) to uncover a range of age DMR sites in genomes of blood leukocytes derived from juvenile and aged horses of native Hucul breed. Genes colocated with age-related differentially methylated regions (age DMRs) are the members of pathways involved in cellular signal transduction, immune response, neurogenesis, differentiation, development, and cancer progression. A positive correlation was found between methylation states and gene expression in particular loci from our data set. Some of described age DMR-linked genes were also reported elsewhere. Obtained results contribute to the knowledge about the molecular basis of aging of equine blood cells.


Sign in / Sign up

Export Citation Format

Share Document