scholarly journals Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tobias Brandt ◽  
Arnaud Mourier ◽  
Luke S Tain ◽  
Linda Partridge ◽  
Nils-Göran Larsson ◽  
...  

Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies (Drosophila melanogaster) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.

2016 ◽  
Vol 36 (39) ◽  
pp. 9990-10001 ◽  
Author(s):  
K. E. Stahon ◽  
C. Bastian ◽  
S. Griffith ◽  
G. J. Kidd ◽  
S. Brunet ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


2015 ◽  
Vol 25 (4) ◽  
pp. 249 ◽  
Author(s):  
Jan Cvecka ◽  
Veronika Tirpakova ◽  
Milan Sedliak ◽  
Helmut Kern ◽  
Winfried Mayr ◽  
...  

Aging is a multifactorial irreversible process associated with significant decline in muscle mass and neuromuscular functions. One of the most efficient methods to counteract age-related changes in muscle mass and function is physical exercise. An alternative effective intervention to improve muscle structure and performance is electrical stimulation. In the present work we present the positive effects of physical activity in elderly and a study where the effects of a 8-week period of functional electrical stimulation and strength training with proprioceptive stimulation in elderly are compared.


PM&R ◽  
2017 ◽  
Vol 9 (9) ◽  
pp. 892-900 ◽  
Author(s):  
Shuhei Morise ◽  
Takayuki Muraki ◽  
Hiroaki Ishikawa ◽  
Shin-Ichi Izumi

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
George Howard ◽  
Mary Cushman ◽  
Maciej Banach ◽  
Brett M Kissela ◽  
David C Goff ◽  
...  

Purpose: The importance of stroke research in the elderly is increasing as America is “graying.” For most risk factors for most diseases (including stroke), the magnitude of association with incident events decreases at older ages. Potential changes in the impact of risk factors could be a “true” effect, or could be due to methodological issues such as age-related changes in residual confounding. Methods: REGARDS followed 27,748 stroke-free participants age 45 and over for an average of 5.3 years, during which 715 incident strokes occurred. The association of the “Framingham” risk factors (hypertension [HTN], diabetes, smoking, AFib, LVH and heart disease) with incident stroke risk was assessed in age strata of 45-64 (Young), 65-74 (Middle), and 75+ (Old). For those with and without an “index” risk factor (e.g., HTN), the average number of “other” risk factors was calculated. Results: With the exception of AFib, there was a monotonic decrease in the magnitude of the impact across the age strata, with HTN, diabetes, smoking and LVH even becoming non-significant in the elderly (Figure 1). However, for most factors, the increasing prevalence of other risk factors with age impacts primarily those with the index risk factor absent (Figure 2, example HTN as the “index” risk factor). Discussion: The impact of stroke risk factors substantially declined at older ages. However, this decrease is partially attributable to increases in the prevalence of other risk factors among those without the index risk factor, as there was little change in the prevalence of other risk factors in those with the index risk factor. Hence, the impact of the index risk factor is attenuated by increased risk in the comparison group. If this phenomenon is active with latent risk factors, estimates from multivariable analysis will also decrease with age. A deeper understanding of age-related changes in the impact of risk factors is needed.


Gerontology ◽  
2017 ◽  
Vol 63 (6) ◽  
pp. 580-589 ◽  
Author(s):  
Juan Diego Naranjo ◽  
Jenna L. Dziki ◽  
Stephen F. Badylak

Sarcopenia is a complex and multifactorial disease that includes a decrease in the number, structure and physiology of muscle fibers, and age-related muscle mass loss, and is associated with loss of strength, increased frailty, and increased risk for fractures and falls. Treatment options are suboptimal and consist of exercise and nutrition as the cornerstone of therapy. Current treatment principles involve identification and modification of risk factors to prevent the disease, but these efforts are of limited value to the elderly individuals currently affected by sarcopenia. The development of new and effective therapies for sarcopenia is challenging. Potential therapies can target one or more of the proposed multiple etiologies such as the loss of regenerative capacity of muscle, age-related changes in the expression of signaling molecules such as growth hormone, IGF-1, myostatin, and other endocrine signaling molecules, and age-related changes in muscle physiology like denervation and mitochondrial dysfunction. The present paper reviews regenerative medicine strategies that seek to restore adequate skeletal muscle structure and function including exogenous delivery of cells and pharmacological therapies to induce myogenesis or reverse the physiologic changes that result in the disease. Approaches that modify the microenvironment to provide an environment conducive to reversal and mitigation of the disease represent a potential regenerative medicine approach that is discussed herein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara A. Harper ◽  
Brennan J. Thompson

The ability of older adults to perform activities of daily living is often limited by the ability to generate high mechanical outputs. Therefore, assessing and developing maximal neuromuscular capacity is essential for determining age-related risk for functional decline as well as the effectiveness of therapeutic interventions. Interventions designed to enhance neuromuscular capacities underpinning maximal mechanical outputs could positively impact functional performance in daily life. Unfortunately, < 10% of older adults meet the current resistance training guidelines. It has recently been proposed that a more “minimal dose” RT model may help engage a greater proportion of older adults, so that they may realize the benefits of RT. Eccentric exercise offers some promising qualities for such an approach due to its efficiency in overloading contractions that can induce substantial neuromuscular adaptations. When used in a minimal dose RT paradigm, eccentric-based RT may be a particularly promising approach for older adults that can efficiently improve muscle mass, strength, and functional performance. One approach that may lead to improved neuromuscular function capacities and overall health is through heightened exercise tolerance which would favor greater exercise participation in older adult populations. Therefore, our perspective article will discuss the implications of using a minimal dose, submaximal (i.e., low intensity) multi-joint eccentric resistance training paradigm as a potentially effective, and yet currently underutilized, means to efficiently improve neuromuscular capacities and function for older adults.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jayashree Srinivasan ◽  
Jessica N. Lancaster ◽  
Nandini Singarapu ◽  
Laura P. Hale ◽  
Lauren I. R. Ehrlich ◽  
...  

Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ian R Lanza ◽  
Daniel K Short ◽  
Kevin R Short ◽  
Yan W Asmann ◽  
Sreekumar Raghavakaimal ◽  
...  

2017 ◽  
pp. 1576-1617
Author(s):  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelos Paraskevopoulos

Advances in the field of neuroimaging have allowed for the examination of the effects of age-related changes on cognitive capacity in elderly populations. Structural techniques are now routinely used to report cortical atrophic rates in aging and particularly within the context of the Alzheimer's disease, and may be integrated with functional techniques which examine the functional characteristics of the cortex at rest and during the performance of a task. Despite advancing age cognitive function remains highly plastic, allowing for interventions that aim to maintain or even remediate its capacity and the mechanisms by which structure and function are altered among seniors. Overall, information on the integrity of the cerebral structure and function aid in the early detection and treatment of the Alzheimer's disease as well as the evaluation and track of the disease's progression. In this chapter, neuroimaging methods are presented along with findings that are particularly relevant for the study of neuroplasticity in the aging brain.


Sign in / Sign up

Export Citation Format

Share Document